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• No need for analytical objective functions and no requirement for 
derivative information

• Less vulnerable to local optimums

• Less vulnerable to uncertainty (relative quality is more important)

• Well suited for multi-objective optimization

• No theoretical guarantee for global optimum

• Population based search -- computationally intensive  

Strengths and Weaknesses of EAs for 

Optimization



Complexities in Real-World Optimization

• Complexity in problem formulation and solution representation 

• Complexity in scale

 Large number of decision variables

 Large number of objectives

• Complexity in handling uncertainty

• Complexity in quality evaluation



Complexity in Problem Formulation and 

Solution Representation



Complexity in Problem Formulation 

• The formulation of the objective function is an iterative process
• Representation is critical : multiple sub-systems, optimization-control coupling
• Different objectives/ constraints / decision variables may have to be 

considered / weighted differently at different stages
• Different resources are available at different stages



Complexity in Shape Representation

Expert Knowledge

Direct representation

Bezier Curves, B-Splines
and NURBS

Free Form Deformation(FFD)



Shape Representations in Micro Heat Exchanger

A Spline representation A frequency-amplitude representation



Micro Heat Exchanger Optimization - Results

spline representation

conventional model

sine wave

representation

• Maximize the heat transfer rate (thermodynamic)

• Minimize the sum of pressure drop with a penalty (aerodynamic)



Complexity in Scale: 

Large Decision and Objective Space 



Swarm Intelligence for Large-Scale Optimization 

• Large-scale evolutionary optimization

– Divide and conquer by random grouping

– Detection of correlation between decision variables

– A competitive swarm optimizer (CSO)

– A social-learning based particle swarm optimizer (SL-PSO)

R. Cheng and Y. Jin. A competitive swarm optimizer for large-scale optimization. IEEE Transactions on Cybernetics, 45(2):191-

205, 2015

R. Cheng and Y. Jin. A social learning particle swarm optimization algorithm for scalable optimization. Information Sciences, 

291:43-60, 2015



Competitive Swarm Optimization （CSO）

• Randomly pick two solutions
• Compare their fitness. The winner is directly passed to the next generation while the 

loser will be updated as follows: 

• Neither global nor personal best is used 



A Social Learning PSO (SL-PSO)



Large Number of Objectives – Many-Objective 

Optimization

• Computational challenges

– Calculation of performance some indicators becomes intractable

• Performance degradation

– Loss of selection pressure in Pareto-based approaches

• Solution assessment becomes tricky

– The performance become very sensitive and also easily biased

– Solution sets are no loner comparable

– Diversity becomes trickier to measure 

• Can we still be able to find a “representative” subset of the Pareto front?

B. Li, J. Li, K. Tang, and X. Yao. Many-objective evolutionary algorithms: A survey. ACM Computing Surveys, 48:13–35, 2015

H. Ishibuchi, N. Tsukamoto, and Y. Nojima. Evolutionary manyobjective optimization: A short review. In: Proceedings of IEEE 

Congress on Evolutionary Computation, pages 2419–2426. IEEE, 2008

H. Wang, Y. Jin and X. Yao. Diversity assessment in many-objective optimization. IEEE Transactions on Cybernetics, 2016 

(accepted)



Evolutionary Many-Objective Optimization

EAs for solving MaOPs may largely be divided into the following categories:

– Preference based, including decomposition approaches

– Convergence acceleration, mainly by modifying the dominance 
relationship or by including additional criteria

– Performance indicator based     



Use of “Knee-Points” to Accelerate Convergence

X. Zhang, Y. Tian, and Y. Jin, A Knee Point Driven Evolutionary Algorithm for Many-Objective Optimization. IEEE Transactions on 

Evolutionary Computation, 19(6):761-776, 2015



Specification of Preferences

Angle-penalized distance (APD): 

R. Cheng, Y. Jin, M. Olhofer and B. Sendhoff. A reference vector guided evolutionary algorithm for many-objective optimization. 

IEEE Transactions on Evolutionary Computation, 2016 (Accepted) 



Efficient Non-Dominated Sorting

• Non-dominated sorting becomes extremely time-consuming in case of

– A large population size

– A large number of objectives

• Computationally efficient non-dominated sorting

– ENS: An efficient non-dominated sorting algorithm for 2 or 3 
objectives with a large population size

– A-ENS: An approximate non-dominated sorting for many objectives

– T-ENS: An accurate tree-based non-dominated sorting for large-scale  
many-objective optimization

X. Zhang, Y. Tian, R. Cheng, and Y. Jin. An efficient approach to non-dominated sorting for evolutionary multi-objective \

optimization. IEEE Transactions on Evolutionary Computation, 19(2):201-213, 2015 

X. Zhang, Y. Tian, Y. Jin. Approximate non-dominated sorting for evolutionary many-objective optimization. Information 

Sciences, 2016 (accepted)

X. Zhang, Y. Tian, R. Cheng, and Y. Jin. A decision variable clustering-based evolutionary algorithm for large-scale 

many-objective optimization. 2016 (Submitted)

Code for the ENS variants available!



Complexity in Quality Evaluation



Complexity in Quality Evaluation

• An analytic fitness function is not available

– Very time-consuming numerical simulations

– Expensive experiments

– History production data only



Data Driven Evolutionary Optimization



Data Driven Optimization – Offline and Online

Data-driven evolutionary optimization

Offline data-driven optimization Online data-driven optimization

H. Wang, Y. Jin and J. O. Jansen. Data-driven surrogate-assisted multi-objective evolutionary optimization of a trauma system. 

IEEE Transactions on Evolutionary Computation, 2016 (accepted)



Offline (Big) Data Driven 

Evolutionary Optimization



Data Driven Evolutionary Trauma System Design

Scottish Trauma system design

H. Wang, Y. Jin and J. O. Jansen. Data-driven surrogate-assisted multi-objective evolutionary optimization of a trauma system. 

IEEE Transactions on Evolutionary Computation, 2016 (accepted) 



Data Driven Evolutionary Trauma System Design

Objective 1: Minimize total travel time

Objective 2: Minimize the exceptions number (the cases "triaged-to-MTC" 
diverted to a TU)

Constraint 1: Number of helicopter transfers

Constraint 2: MTC case volume

Constraint 3: TU proximity to avoid two close TUs

Main research question is: how to reduce computational time given the large 
amount of data (the amount of data could be much larger)?

• The EA is able to find the Pareto optimal solutions

• The computation time can be reduced as much as possible



Data Driven Evolutionary Trauma System Design

• 40,000 incident records (location, injury, patient)
• 18 trauma centers in Scotland

• Fitness evaluations is highly time-consuming when the number of 
records is huge 



Initialize

Evaluate

(Parent)

Recombine

Mutate

Evaluate (Offspring)

Select

Terminate

4. Crowded 
Non-dominated 
sorting1. Merge

2. Non-dominated
sorting

3. Crowding
distance 
sorting

Elitist Non-dominated Sorting GA (NSGA-II)

Non-dominated sorting



Solution

• Group the data into a number of clusters and use the cluster centers to 
evaluate the objective and constraint functions

• How to make sure the accuracy is good enough?

• The maximum error should not change the individuals to be selected

Data Driven Evolutionary Trauma System Design

First and last front of individuals to be selected

Estimated error for a given number of 
clusters:



• Adaptation of K

Data Driven Evolutionary Trauma System Design



Data Driven Evolutionary Trauma System Design

MTC

TU

LEH



Discussions

• Online big data driven evolutionary optimization, e.g., stream data

• Efficient learning of big data

• Noisy and / or heterogeneous data 



Online (Small) Data Driven 

Evolutionary Optimization



• In many cases, collecting data is very expensive

– Highly time-consuming numerical simulation

– Expensive physical experiments

– Real-industrial processes only

Small Data – Collecting Data is Expensive



Surrogate-Assisted Evolutionary Optimization

• Use a meta-model /surrogate to replace the expensive fitness evaluations, e.g., CFD 
simulations
 Choose a surrogate
 Collect data
 Train the surrogate
 Replace the CFD



• Use surrogates only: Risk of converging to a false optimum  

• Surrogate management / evolution control
 population-based 
 generation-based
 individual-based
 local search

 Combination of the above

Model Management

Y. Jin. A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing, 9(1), 3-12, 2005

Y. Jin. Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm and Evolutionary 

Computation, 1(2):61-70, 2011



Model Management – Main Questions

Which individuals are to be re-evaluated using the real-fitness function?

• Solutions that are of potentially good performance

• Solutions whose estimated fitness have large amount of uncertainty

 Less explored 

 Effective for model improvement

• How to measure uncertainty? 

• How to measure model quality? (Jin et al 2003, Huesken et al 2005)

M. Huesken, Y. Jin and B. Sendhoff. Structure optimization of neural networks for evolutionary design optimization. Soft 

Computing, 9(1), 21-28, 2005 

Y. Jin, M. Huesken and B. Sendhoff. Quality measures for approximate models in evolutionary computation. In: Proceedings of 

the GECCO Workshop on "Learning, Adaptation and Approximation in Evolutionary Computation", pp.170-174, Chicago, 2003



• The best strategy is more efficient than the random strategy
• In the best strategy, about half of the individual should be controlled to guarantee 

correct convergence 

• 12-D Ackley function
• (3,12)-ES
• average over 10 runs

Number of re-evaluated individuals Number of re-evaluated individuals

Random strategy Best strategy

Model Management – Promising Ones

Y. Jin, M. Olhofer and B. Sendhoff. A framework for evolutionary optimization with approximate fitness functions. IEEE 

Transactions on Evolutionary Computation, 6(5): 481-494 (2002)



Model Management – Promising and 

Uncertain Ones

Given a stochastic model (Gaussian process),
• Mean fitness value: 

f =  (x);

• Lower confidence bound (LCB) 

f =  (x) -  (x) ( > 0)

• Expected improvement (EI)

• Probability of Improvement (PI)

(Taken from Brochu et al, 2010)

M. Emmerich, K.C. Giannakoglou, B. Naujoks, Single- and multiobjective evolutionary optimization assisted by Gaussian random 

field metamodels. IEEE Transactions on Evolutionary Computation, 10 (4) : 421–439 (2006)

Eric Brochu, Vlad M. Cora and Nando de Freitas. A tutorial on Bayesian optimization of expensive cost functions, with application 

to active user modeling and hierarchical reinforcement learning, 2010. https://arxiv.org/pdf/1012.2599

https://arxiv.org/pdf/1012.2599


Model Management in Multi-Objective 

Optimization

• Each objective is considered separately (similar to single objective optimization)

• Multiple objectives are converted to a scalar objective function and then use the 
model management criteria for single objective optimization

– Random weights

– Uniformly distributed weights

• Use a scalar performance indicator, e.g., hypervolume

D. Horn, T. Wagner, D. Biermann, C. Weihs, and B. Bischl. Model-Based Multi-Objective Optimization: Taxonomy, Multi-Point 

Proposal, Toolbox and Benchmark. In: Evolutionary Multi-Criterion Optimization, LNCS 9018, pages 64–78.



Potential Benefit of a Global Model

A global model might help smoothen the fitness landscape

D. Lim, Y. Jin, Y.-S. Ong, and B. Sendhoff. Generalizing surrogate-assisted evolutionary computation. IEEE Transactions on 

Evolutionary Computation, 14(3):329 - 355, 2010

C. Sun, Y. Jin, J. Zeng and Y. Yu. A two-layer surrogate-assisted particle swarm optimization algorithm. Soft Computing, 

19(6):1461-1475, 2015



Dual Surrogates in Memetic Algorithms

Initialize and evaluate 

a parental population

Evaluate all 

individuals using 

original fitness 

function

Perform local 

refinements on all 

individuals

Select new parental 

population

Termination 

condition reached?

No

Yes

END

START

Build the first local 

surrogate model, M1 

which can provide 

robust prediction 

accuracy

Build other local 

surrogate model(s), 

M2 ,M3 , …, Mk  

to facilitate greater 

diversity in the 

search

Perform local 

refinement using  

M1  

Perform local 

refinement(s) 

using each of 

M2 ,M3 , …, Mk  

Replace every 

individual with the 

best local optimum 

found from search in 

M1 ,M2 ,M3 , …, Mk  

using Lamarckian/

Baldwinian learning  

Create offspring 

population by applying 

evolutionary operator 

on parents

Methods to generate a more robust surrogate model:

- ensemble of multiple surrogate models

- gradient-based surrogate model

- etc.

For each individual i 

i=1,2,…,popsize

Dual Surrogate Single Objective MA (DS-SOMA)

Smoothing

Exploiting



DS-MOMA SS-MOMA- PR+RBF+GP

SS-MOMA-PR SS-MOMA-PerfectAll results from 20 runs

Results: Multi-Objective



Global and Local Surrogate Models

C. Sun, Y. Jin, J. Zeng and Y. Yu. A two-layer surrogate-assisted particle swarm optimization algorithm. Soft Computing, 

19(6):1461-1475, 2015

Two-layer (global and local) surrogate-assisted PSO



Surrogate-Assisted Large-Scale Evolutionary 

Optimization?

• Dimension mostly limited up to 10 in GP-assisted EAs, mostly up to 30

 Curse of dimensionality

 Dramatic increase in computational cost for training surrogates, 
e.g., Gaussian processes – it can take hours to build a GP  model 



Fitness Estimation Assisted CSO for 

Large-Scale Optimization

Particles whose fitness is estimated (ES)

Particles whose fitness is calculated (EV)

Winner particle whose fitness is calculated (EV)

Loser particles whose fitness is estimated (ES)

C. Sun, J. Ding, J. Zeng and Y. Jin. Fitness approximation assisted competitive swarm optimizer for large scale expensive 

optimization problems. Memetic Computing, 2016 (accepted)

• Fitness estimation in competitive swarm 
optimization for dimensions up to 500

 Fitness estimated based on positional 
relationships



• Evolutionary optimization of complex systems is promising yet 
challenging

• Data-driven evolutionary optimization becomes increasing important

• Surrogate-assisted evolutionary optimization will not only be essential 
for evolutionary optimization of complex systems but also provides a 
platform for integrating evolution and learning techniques

– Which to re-evaluate (sample)

Active learning

– Small data

Semi-supervised learning

Transfer learning 

– big data

Deep learning

Concluding Remarks


