

The use of surrogates in Genetic Programming

Juergen Branke, Torsten Hildebrandt

Hildebrandt, T.; Branke, J.: "On using surrogates with genetic programming". Evolutionary Computation Journal 23(3), 2015, pp. 343-367

Outline

- Motivation
- Ochallenges
- Generation of dispatching rules
- Output Description Phenotypic distance measures
- Empirical results
- Conclusion

Motivation

- Evaluating a single solution can be computationally very expensive
- Evaluating a solution can be costly
- Evaluating a solution can be dangerous
- Evaluating a solution may require user interaction

Number of fitness evaluations is limited

Solution

- Learn surrogate fitness model
- Use surrogate models to estimate fitness of solutions
- Discard some solutions without evaluating their fitness

Surrogate assisted evolutionary algorithms

- 1. Initialize population
- 2. Evaluate population
- 3. Train surrogate model(s)
- 4. Create offspring
- 5. Estimate fitness of offspring based on surrogate
- 6. Decide which solutions to evaluate
- 7. Update surrogate model(s)
- 8. Merge offspring and parent population
- 9. Go to 4.

Challenges

Which solutions to evaluate

- Promising solutions
- Solutions where surrogate model is uncertain
- Solutions that improve accuracy of surrogate model
- What model(s) to use
 - Gaussian Processes
 - Artificial Neural Networks
 - Regression
 - All models require a distance metric

Challenges in combination with GP

- GP typically uses a tree representation
- Not clear how to define distance between trees

Genotypic distance

$$SHD(T_1, T_2) = \begin{cases} 1 & \text{if } arity(p) \neq arity(q) \\ hd(p, q) & \text{if } arity(p) = arity(q) = 0 \\ \frac{1}{m+1} \left(hd(p, q) + \sum_{i=1}^m SHD(s_i, t_i) \right) \\ & \text{if } arity(p) = arity(q) = m \end{cases}$$

- p, q: root nodes
- Si, ti: i-th subtree of p, q
- HD: Hamming distance, 0 if same terminal/non-terminal

[Moraglio and Poli 2005]

Challenges in combination with GP

- GP typically uses a tree representation
- Not clear how to define distance between trees
- Different trees can encode the same solution
 - Permutations
 - Equal meaning
 - Bloat

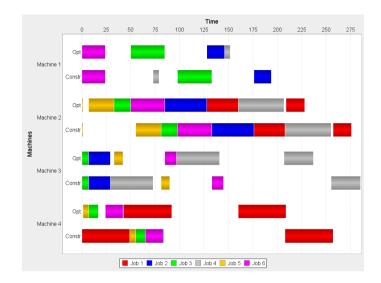
Idea: Phenotypic distance [Hildebrandt & Branke 2015]

- Distance not between genotypes (trees) but between behaviour
- Problem specific

Scheduling

- What job to produce when on which machine
- Omnipresent in manufacturing
- Large impact on cost
- Very complex (NP hard)

A lot of research has gone into scheduling



Real world challenges

- Most environments are dynamic
 - New jobs arriving over time
- Most environments are stochastic
 - Stochastic processing times
 - Machine failures
 - Stochastic rework
 - Repeated re-scheduling

Dispatching rules

Job shop scheduling

- Jobs consist of an ordered sequence of operations
- Each operation takes a certain time processing on a certain machine
- Order of machines can be different for each job
- A machine can process only one operation at a time
- Operations can not be interrupted
- Objectives: Minimize tardiness or mean flow time

Dispatching rules / Self-organization

- No global schedule generated
- Decision rule to determine next action whenever a machine becomes idle
- Popular examples: FIFO, SPT, EDD

Advantages:

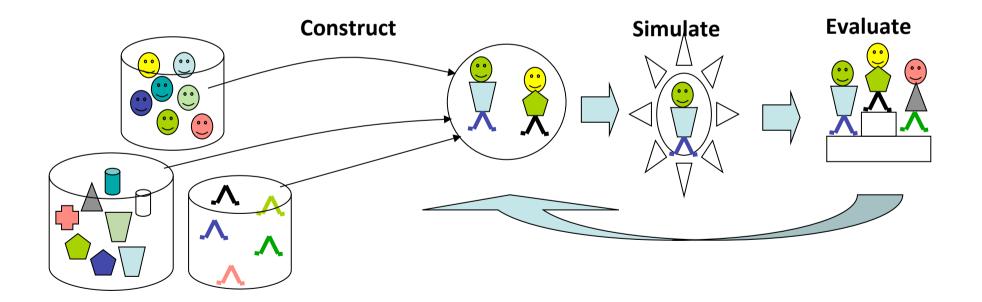
- Always take latest information into account
- Easy to implement and to compute

Design challenge

- Dispatching rules are based on local information
- Performance is measured globally
- How to design local dispatching rules to achieve best possible global performance?
 - Which attributes?
 - How combined?

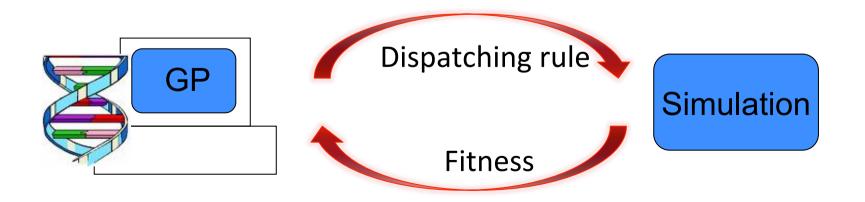
Simulation-based design

- Construction of several alternatives
- Simulation to evaluate the alternatives
- Attempt to find a better solution

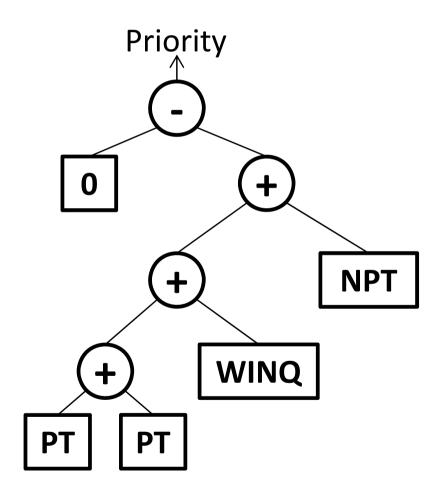


Automatic generation of dispatching rules [Branke et al. 2010]

- Genetic Programming can generate Lisp expressions
- Evaluation of a dispatching rule via stochastic simulation



NPT+WINQ+2*PT



Challenges

- Simulation computationally expensive
 - Parallel execution on machine with 8 processors
 - Runtime: ca. 7 hours
- Stochastic simulation
 - Typical approaches of averaging over space or averaging over multiple runs doesn't work
 - Equal seed within a generation
 - Store best solutions of each iteration
 - Clean-up after optimisation with OCBA
- Trade-off: Quality and complexity of rule
 - Multicriteria approach

Benchmark from

semiconductor manufacturing (MASM)

- 31 machine groups, some with parallel machines
- Batch machines
- Some machines with setup times
- 2 product categories, 92 and 19 operations
- Minimise weighted tardiness

Terminals

- Processing time
- Processing time on next machine
- Number of operations remaining
- Remaining processing time
- Work in next queue
- Time in queue
- Time in system
- Slack
- Time until deadline
- Weight
- Setup time
- Number of compatible jobs for batching

Results

Rule of length 9: w/max(L,P)-s+b

• Rule of length 98:

$$\begin{split} & \text{ifte}(\max(1,r) - \max(1,r,L),w,b) * b * \max(r/L + \max(-\operatorname{ifte}(b-L,w,b) + s + b,S + b * ifte(\max(1,r) - \max(L,d),w,b) - s - \max(1,r,L) + \max(1,r) + 1) * \operatorname{ifte}(b-L,w,b) - s,S + b * \operatorname{ifte}(\max(1,r) - L,w,b) * (2 * r/L - s) + r/L - s + 1) \end{split}$$

Results (2)

Comparison with best rules from literature

Util 93.8%; Product mix 30/70				
Rule	WeightedTardiness			
ATCS/MBS(5)	2336			
GP9	1669			
GP98	782			
GP199	696			

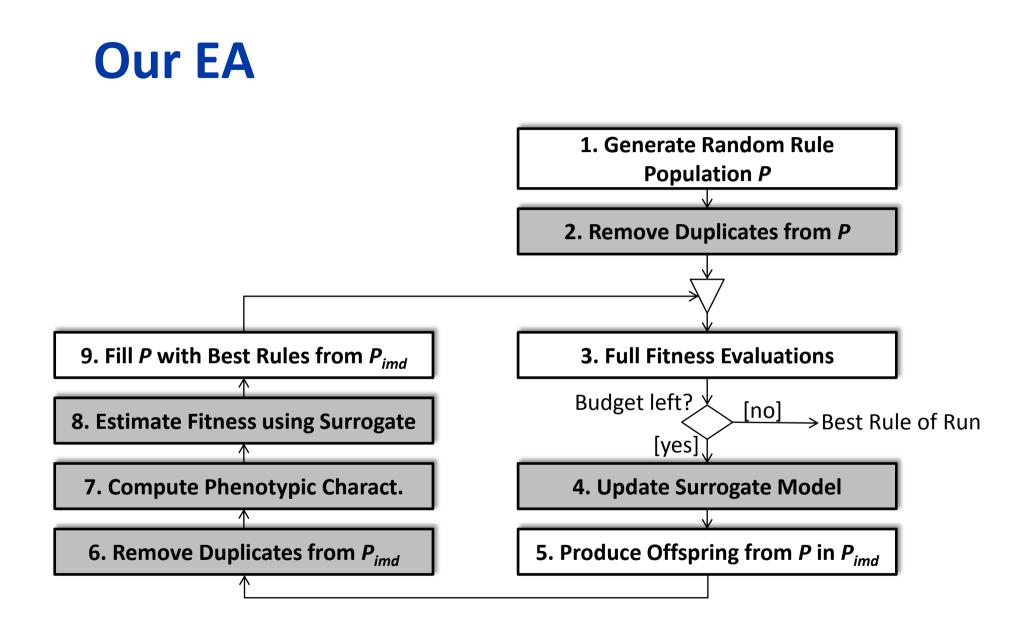
Util 85%; Product mix 30/70

Rule	WeightedTardiness
ATCS/MBS(4)	451
GP9	451
GP98	47
GP199	95

Util <mark>85</mark> %; Product mix <mark>70/30</mark>			Util 93.8%
Rule	WeightedTardiness		Rule
WMOD/MBS(1)	216		WMOD/MBS(3
GP9	644		GP9
GP98	51		GP98
GP199	98		GP199

Util 93.8%; Product mix 70/30				
Rule	WeightedTardiness			
WMOD/MBS(3)	1245			
GP9	868			
GP98	206			
GP199	279			

70/00



Phenotypic characterization

decision	attri	ibute s	set s	ranking by	ranking by	decision
situation	S_1	S ₂	S ₃	reference rule	other rule	vector d
1	3	4	8	1	2	
1	7	6	15	2	1	2
2	23	17	1	2	2	
2	8	9	3	3	1	3
2	6	4	6	1	3	
:		:		:	:	:
k	7	3	9	2	2	
k	4	8	6		1	1

Database and distance function

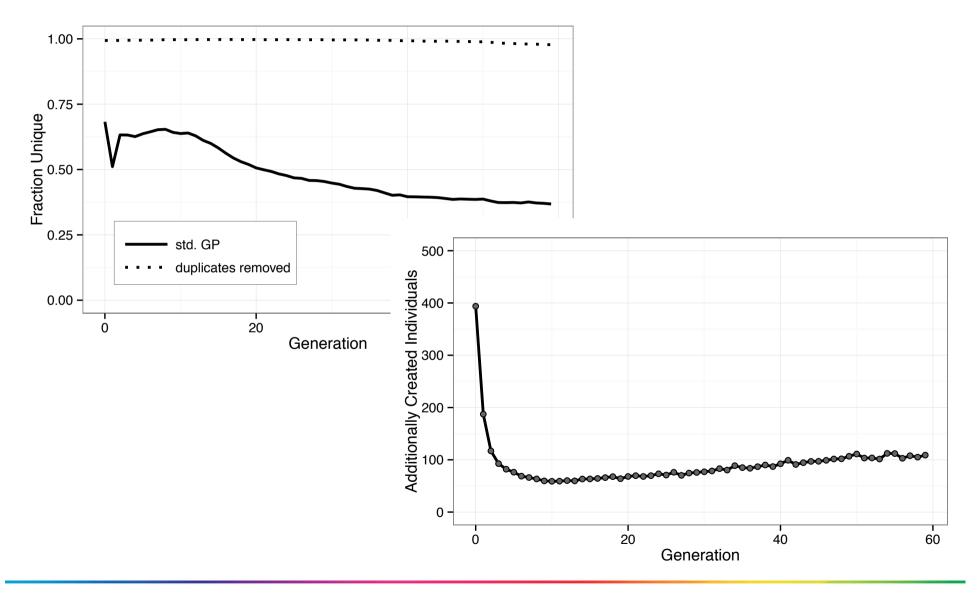
	d_1	d_2	•••	d_k	fitness	
rule ₁ :	2	3		1	1456	
rule ₂ :	1	2:	•••	2	1123	
: rule _m :	1	: 3	•••	1	1456 1123 : 1293	
					-	$\sum_{i=1}^{k} \left(d_i^A - d_i^B \right)$

 $)^2$

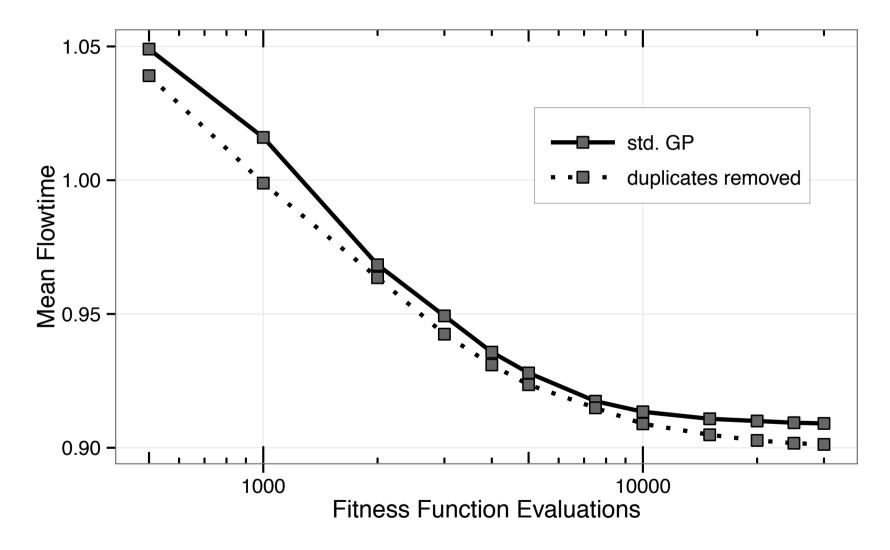
Phenotypic characterization

Algorithm 1 Compute the phenotypic characterization **Input:** r_{new} : the dispatching rule to characterize **Input:** r_{ref} : the reference rule **Input:** *S*: set of |S| decision situations **Output:** *d*: decision vector with |S| elements 1: $d \leftarrow$ new integer vector with |S| elements 2: for $i \leftarrow 1, |S|$ do $s \leftarrow S[i]$ \triangleright for each decision situation $s \in S$ 3: $p_{ref} \leftarrow apply(r_{ref}, s)$ \triangleright compute |s| priorities applying r_{ref} to s4: ▷ find ranks, highest priority gets rank 1 5: $k_{\text{ref}} \leftarrow \text{ranks}(p_{\text{ref}})$ 6: $p_{\text{new}} \leftarrow \operatorname{apply}(r_{\text{new}}, s)$ $k_{\text{new}} \leftarrow \text{ranks}(p_{\text{new}})$ 7: 8: $j \leftarrow \arg\min(k_{\text{new}})$ \triangleright find index with rank 1 $d[i] \leftarrow k_{\text{ref}}[j]$ 9: 10: end for 11: **return** *d*

Duplicate removal



Benefit of duplicate removal



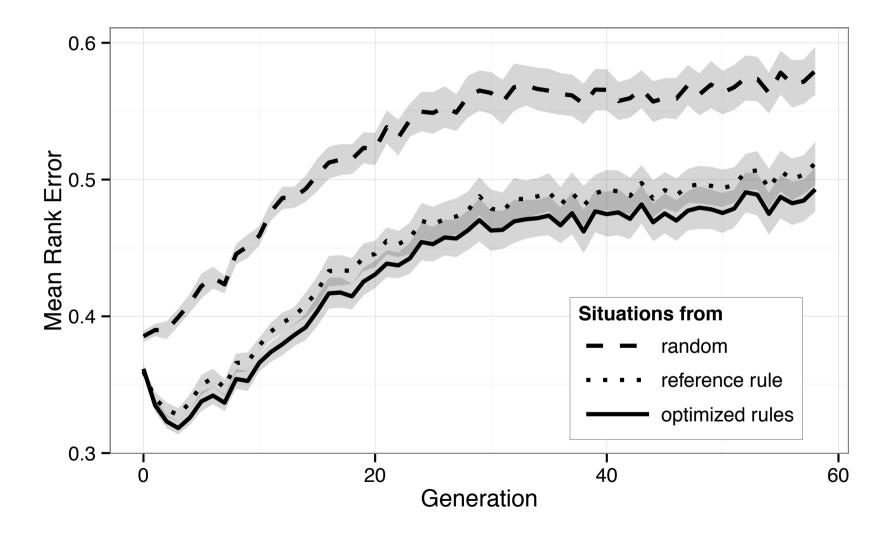
Surrogate model used

- Nearest neighbor
- Pre-selection
 - Number of offspring n times larger
 - Select top 1/n using surrogate model

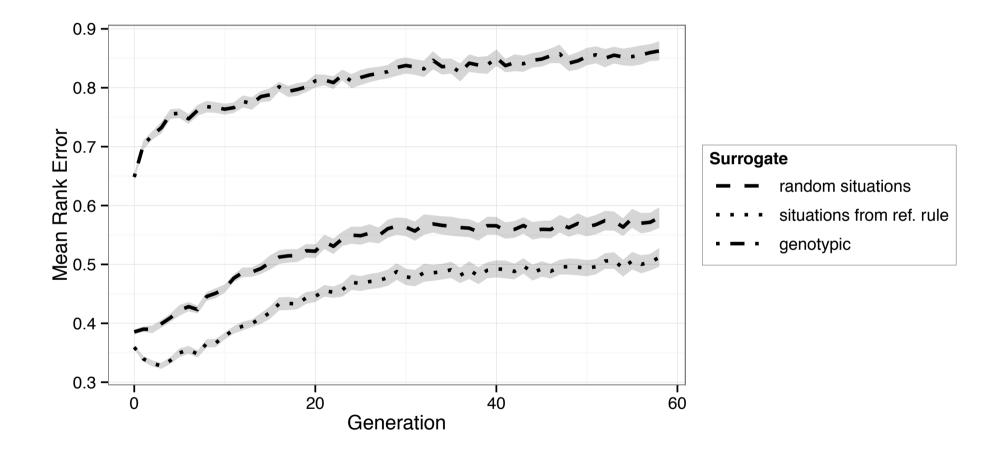
How to select "decision situations"

- *Random* based on typical value ranges, attributes independent
- *Reference rule:* From a simulation with a preselected simple rule (Holthaus)
- Optimized: From a simulation using the best found rules

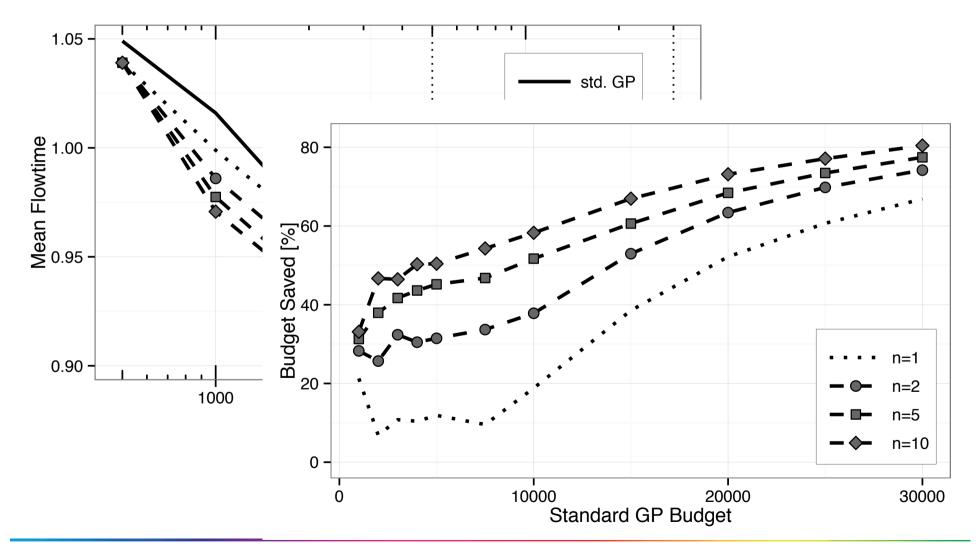
Mean rank error during optimization



Phenotypic vs. genotypic distance



Empirical performance



Relative performance difference

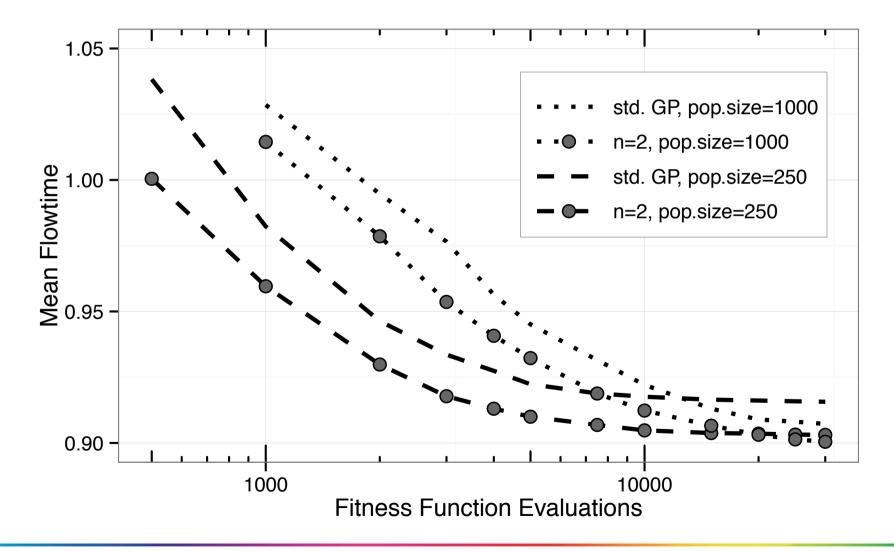
After 5,000 evaluations

	n=1	n=2	n=5	n=10
standard	5.7 (+)	14.0 (++)	20.0 (++)	22.6 (++)
n=1		8.3 (++)	14.3 (++)	16.9 (++)
n=2			6.0 (++)	8.6 (++)
n=5				2.6 (o)

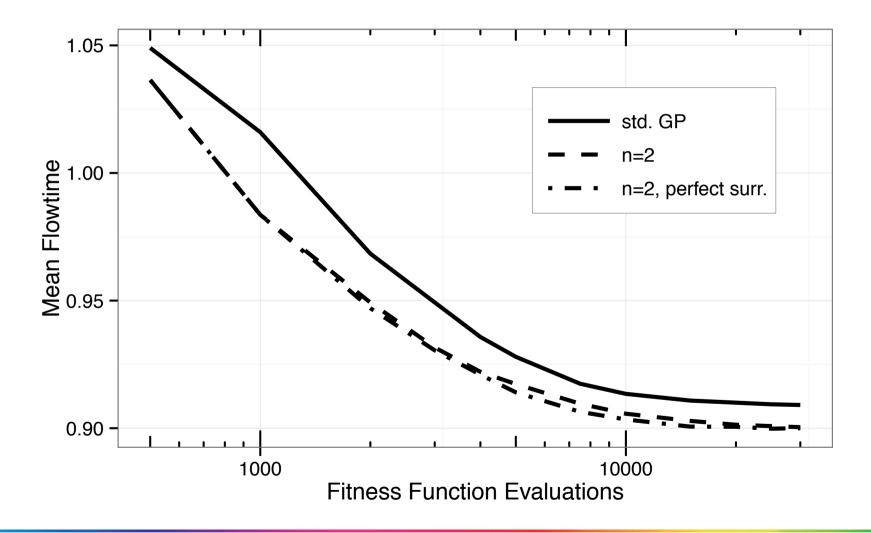
After 30,000 evaluations

	n=1	n=2	n=5	n=10
standard	10.2 (++)	10.7 (++)	8.5 (++)	7.1 (++)
n=1		0.5 (o)	-1.7 (o)	-3.1 (+)
n=2			-2.2 (o)	-3.6 (++)
n=5				-1.4 (o)

Effect of population size



Perfect surrogate



Recent alternatives [Nguyen et al., Trans. on Cybern., 2016]

• Use a simplified simulation model

- Shorter warm-up period
- Shorter simulation
- Reduce complexity by reducing the number of machines and number of operations per job

