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Concorde in flight.
Photo: Eduard Marmet, 1986



Low-Boom SSTs

Supersonic Transports 1

* Revival of interest in commercial SSTs
* Aircraft design has many trade-offs

 Airlines want:
* Low running cost and greater capacity

* Passengers want:
e Speed and comfort at a low cost

* People on the ground want:
* Less noise, less environmental impact

* - Design for greater lift to drag & less noise
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Aerion AS2 (old design)
(Original: https://www.aerionsupersonic.com/)

Boom Overture
(Original: http://boomsupersonic.com/)

(Original: https://nasa.gov) 3
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Supersonic Transports 2

* Supersonic flight creates shockwaves
* The shocks are propagated to the ground

* Performance and noise affected by design!

Y

Pressure extraction line
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Atmospheric

Propagation |

Mid field

Ground level noise prediction process
(Original: Plotkin, 1989)
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Study Aims
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* Optimise: “Realistic” SST by wing planform (sectional-shape) design

* Low drag (inviscid)
* Low ground-level noise (A-weighted)

e Subject to: minimum lift constraint and geometric constraints

e Using: EHVI-Kriging Believer-based BO framework

 Compare the effectiveness of solvers
* Gradient-based vs GA solver for EHVI optimisation
e 6-var problem vs 11-var problem

o F
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Modified 69-degree Delta-Wing Body
(Original: Hunton, 1973)
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Parameterisation Models

1-Section Wing (6 Var.) 2-Section Wing (11 Var.)
smbol | paamctr__|_ain_| iz R o | _vin | o I simoor | | s

x-location of wing (m) 0.05 . 005 0.1
z-location of wing (m)  -0.0045 0.0045 -0.0045 0.0045 -45 45
- leading edge sweep (°) -65 75 Arg, -65 75 0.021 0.11
dihedral (°) -15 15 30 30 0.02 01
root chord (m) 0.04 0.11 0.03
- root thickness / chord 0.02 0.1 0.02
0.01
X
S=S+S, e

0.3§ < §; <098
Wingtip > 7°

S = 0.00165529 m?

09 July 2020 ) ) )
N.B. All wings use a diamond cross-section.
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Objectives, Constraints, and Settings

Objectives and Constraints _ CFD (SU2)

Objective 1 Minimize inviscid drag (C, ) Angle of attack (a) 4.9°

Objective 2 Minimize A-weighted ground-level noise (dBA) Mach number (M) 1.7

Constraint 1 Lift coefficient (C, = 0.15) Flight altitude 55,000 ft (Std. Atm.)
(“expensive”

Constraints 2, 3 | Geometric constraints

(“cheap”) Atmospheric Boom Propagation

(NASA sBOOM)

Pressure extraction radius | ~2.5 body-lengths

S=5+S5, [Tor]
0.35 < S; < 0.9S

Wingtip > 7° Wave discretisation 3000 points
[Front] Extraction angles 0°

to
Z4 Reflection factor 1.9

Model scale 0.0065
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Initial sampling
and evaluation

. Kriging Believer (KB)
fmm TN mmmm -
Append evaluated | [ Kriging Append predicted
candidate data ' > construction of candidate data
[ ! objectives and
constraints
+ i N

|dentify non- |candidate output
dominated front . -
using Kriging

| f

Optimization

[ ] Predict

Workflow Evaluate

candidates from
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KB i ] e
Identify next
A KB ?:;#Eg‘?tes candidate by
) (naximizing EHVI
o Return
___No Stop criterion/ initial dataset,

max batch number

reached? updated dataset,

and ND front
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Initial sampling
and evaluation

Kriging Believer (KB)

Append evaluated | Kriging Append predicted
candidate data ' > construction of candidate data
[ ! objectives and
I 5 o | constraints
nitia v ) ,
. i . Predict
Identify non- .
Sa m p | | ﬂ g domina?;d frnnt] [candidate output

using Kriging

1

’ ™

Identify next

dan d Evaluate

candidates from

Evaluation B

- O O O . O O . O O . O e e e e e e o

4 E = I IS I I O O O O O S . .

A KB :T;t#gggtes candidate by
) (naximizing EHVI
o Return
___No Stop criterion/ initial dataset,

max batch number

reached? updated dataset,

and ND front
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Lift, Drag, and Noise

* CFD evaluates the aircraft near-field (SU2)
* Lift, inviscid drag, near-field pressure

* Atmospheric propagation of near-field
pressure to the far-field (NASA sBOOM)

e Noise (dBA) evaluated from far-field pressure
* Assuming no wind or turbulence

1
sz

CFD at flight altitude

Y X

09 July 2020 . T
/ Near-field Pressure extraction line (not to scale)

Nearfield Signature
Overpressure dp/P

Ground Signature
Overpressure (psf)

| |
o e o
o o o
R = S

0.03

0.02 +

0.01 -
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Initial sampling
and evaluation

Kriging Believer (KB)

Append evaluated | Kriging Append predicted
candidate data ! construction of candidate data
[ objectives and
constraints
i N
. . Predict
Identify non- .
G dussSian [domina:td frnnt] |candidate output
using Kriging

Process Evaluate

candidates from

1

- O O O . O O . O O . O e e e e e e o

4 E EH N IS I I I O O S S S S O O B

KB i ] e
Identify next
A KB :T;t#gggtes candidate by
) (naximizing EHVI
o Return
___No Stop criterion/ initial dataset,

max batch number

reached? updated dataset,

and ND front
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Kriging (Gaussian Process) Model

15 * GP models predict a system’s outcome

—— Kriging estimation
% Initial Population

Confidence Interval * Model relationship between:
* Input variables X = {x(, ..., x(™} and
* Responsey = {yW), .., y™}
e Using Gaussian autocorrelation

* Hyperparameters 0 are optimized

* Maximising the In-likelihood function
« 0 ={04,...,0,,}, represent variable length scales

* Produce a prediction and its uncertainty

=15

I I N R e Useful in the place of expensive evaluations
0 2 4 5] X 8 10 12 14 . CFD!

09 July 2020 12
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Kriging (Gaussian Process) Model

* GP models predict system’s outcome by modeling relationship between system input variables
X = {xW), ..., x™} and its corresponding response y = {y1), ..., y(™} using Gaussian

autocorrelation: ,
" .
MOJEING

cor[y(x(i)),y(x(l))] = exp —0.52 /
j=1

0;

* Hyperparameters @ = {04, ..., 6,,}, which represents the length scale of each variable dimension
that needs to be optimized by maximizing In-likelihood function to obtain an accurate Kriging
model.

* In our case, we use a gradient-based optimizer with 5 different starting points to optimize the
hyperparameter.

* Prediction at the unobserved input x* can be estimated using the following equation
Yy =g+ Py - 1)
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Initial sampling
and evaluation

. Kriging Believer (KB)
fmm TN mmmm -
Append evaluated | [ Kriging Append predicted
candidate data ' > construction of candidate data
[ ! objectives and
constraints
Maximisin M dent Predict
g |dentify non- ] candidate output
dominated front . -
\ using Kriging

EHVI

- O O O . O O . O O . O e e e e e e o

4 E = I IS I I O O O O O S . .

Evaluate
(Gradient vs GA) candidates from
Identify next
A KB max updates candidate by
reached? L
aximizing EHVI
o Return

__No Stop criterion/ initial dataset,

max batch number

reached? updated dataset,

and ND front

Low-Boom SSTs July 9, 2020 14
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Constrained EHVI
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EHVI formulation:
* EHVI(x) = [, 1(J,P) - PDFy (3)dy
 (Emmerich et.al, 2008)

As we deal with both expensive and cheap

urren NN P . . iy
Solution .._S‘( )'-_ \ constraint, EHVI value is modified:
* EHVIconstralned(x) - EHVI(X) Hn qonst POFL'(X)
A\ Probability of Feasibility (PoF) for cheap
AL constraints is 1 (feasible) or 0 (violated)
I(yced, p) | A\ For expensive constraints
& N
” *_. - ;
yeand New Solution fl ° POF(x ) — f ex p< (F g(x )) )dG
> 2 82
* (Forrester, Sobester, Keane, 2008)
For a more-detailed explanation, see:
09 July 2020 Shimoyama, Jeong, Obayashi, 2013, Kriging-surrogate-based optimization considering expected hypervolume 15

improvement in non-constrained many-objective test problems
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Initial sampling
and evaluation
. Kriging Believer (KB)

”

Append evaluated Kriging Append predicted
candidate data construction of candidate data

[ objectives and 1

constraints

v r ,

[ ] Predict

Kriging

|dentify non- |candidate output
dominated front . -
using Kriging

N

Believer
Evaluate
I_O 0O p candidates from ) T ,

KB .
Identify next
A KB max updates candidate by

l?
reached? (naximizing EHVI

Return
initial dataset,
updated dataset,
and ND front

Stop criterion/
max batch number
reached?

NO

Low-Boom SSTs July 9, 2020 16
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Kriging Believer and Optimizers

e EHVI produces single candidate [';i‘féﬁ:.ﬁ";‘.‘;?]
samples per update—slow! L . Kriging Believer (KE)
* Kriging Believer (KB) with 5 updates  “proicciaee | [ Kigng ) - Apperspredeied |
per batch is implemented to ( > obiectives and [€ :
accelerate sample generation & e ] :
evaluatlon : [ Identify non- ] [ !’redict :
1 : ) candidate output|
. R " Ldomlnated frontj using Kriging !
* To maximize EHVI we compare S - .
2 Opt|m|zers [candid;tBes from] : T E
* L-BFGS-B from SciPy with 5 different X ! KB max updates P A ] |
starting points for hyperparameter : reached: maximizing EHVI|

optimisation

e GA with localised search near ND
front points (GA + ENDS)

Return
initial dataset,
updated dataset,
and ND front

Stop criterion/
max batch number
reached?

09 July 2020 17



Low-Boom SSTs

S

Fe Institute of Fluid Science

Tohoku University

Effective Non-Dominant Sampling (ENDS)

&  Samples
ND Front

Noise (dBA)

0045 0050

CcD

0030 0035 0040

N.B. Feature dimensions
reduced for visualisation

09 July 2020

Feature 2

600

400

200

—200

=400

* Samples

et o .' -': *8
J‘:: ¢ X % . . e :.}I'

ND Front
ENDS

0 200
Feature 1

EHVI performs poorly with saturated
regions on the ND front

ENDS is our approach to localize the EHVI
search of the next candidate

In place initialising random sampling across
the design space

 Generate normal distributions around each of
the ND points

e Each ND point is used as the mean of each
distribution

e Standard deviation of the distribution is
defined as 0.2 of the initial dataset’s standard
deviation for each design variable

18



Low-Boom SSTs

Institute of Fluid Science

£ Tohoku University

Objective-Space Results (Noise vs Drag)

6-variable dataset

11-variable dataset

82 1 ° 82 1
] x. x .. * 5 % X ... ®
80 - I | 5.3.. o o 2 80 X XX 589 €O O M
] b - o
] 0.0 g : o® %
78 - ST A i e 78 oo o
I x%J X ; % . It .
] : X e
= 797 2<% < 767 X oy X
o . Xl @ ] X 7 e®
o 74-: * ® . 74 : . % o ® .
721 Y . 72 1 e ®
: X ] g . ®
] Xipe _ x >
70 - xé o ® Initial 70 - X% »
] ¥ x. ® Gradient-Based ] o .. ® |Initial AT e GA
68 - x ® Genetic Algorithm 68 1 x @ Gradient ® GA-ENDS
000 001 002 003 004 005 006 0.00 001 002 003 004 005 0.6
CD CD
Gradient: Initial 2 13 updates Gradient: Initial 2 2 updates
GA: (Initial + gradient-based sols. up to 6t" update) = 7 updates GA: (Initial + gradient-based sols.) 2 8 updates
July 9, 2020 GA-ENDS: (All previous) = 2 updates 19
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6-Variable Results

Upper surface pressures

Low noise
dB(A)
Low drag
CL
Lower surface pressures
Low drag b
2 X Low noise  CL/CD
v 4160103 -02 01 0 0. 2.7;;-01

CP

Lowdrag: Low noise

I ——

09 July 2020 . | .

Common Points
* High spans (low chord) ¢ Thinner wing
* High sweeps

Positive dihedral
High fuselage position 20
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Aerodynamic and noise parameters as a percentage of the baseline

-20%

-10% 0% 10% 20%

- i
635 Baseline (AS00)

dB(A) 72.56
C 0.1567
176.8

0.1534'

0.1529 "
0.0148

]
0.0163

Cp (counts)

9.36 10.34
MW Low drag Low noise

For Low Drag:

* More sweep
» Aftward position
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11-Variable Results (GA-ENDS)

OpenVSP 320.1- 023720 S ox OpenVSP 320.1- 023720

Tohoku University

File Edit Window View Model Analysis

lle Edit_Window View Model Analysis File Edit Window View Model Analysis

Decreasing Noise

80% 85% 90% 95% 100% 105% 110%

Common Points

SO0 I — 5:2(1?2;7 . Hﬁgh spans (low chords)
NN * High sweeps
AT159 T%‘f’z wlL  Leading and traili.ng edges
* Small outboard sections
AT167 em—— 00156 N C0 Fuler * Section thicknesses
T R m dB(A) * Thicker inboard, thinner outboard
AT165 o 00172 * Positive dihedral

21
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Design Diversity

OpenVSP 3.20.1- 01/23/20
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OpenVSP 3.20.1 - 01/23/20

File Edit Window View Model Analysis

File Edit Window View Model Analysis

=
g

z

(- v (- v
80% 100% 120% 140% 160% 180%
I 0.157
0.0177
ASO0 e 00334
e 72.6
I (.15 I mCL
ATO84 I 0.0432. CD Euler
s 716
B CD Total
]
AT183 0.0243 W m dB(A)
09 July 2020 I 0.0446

. 716

AT0183

22
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Concluding Points

Constrained EHVI BO + Kriging Believer was used to optimize a supersonic wing planform
e Using a gradient-based solver and genetic algorithm
e For 6-var and 11-var parameterisations

The GA-based solver could find solutions which gradient-based solver could not
* At atime penalty (~10x)

e Caution — GA results continued the search from some of the gradient-based results

6-var vs 11-var parameterisation
e 6-var: ND points were probably limited by parameterisation
e 11-var: Diverse set of designs sampled but, the ND front was represented by a small set of similar solutions

Further work

e Testing of ENDS for more complex datasets
* Include an estimate of skin friction drag

* Drag reduction driving thin wings and high spans
* Stricter wing-span constraints

e Explore further from the undertrack

09 July 2020 23
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