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Concorde in flight.
Photo: Eduard Marmet, 1986



Supersonic Transports 1
• Revival of interest in commercial SSTs
• Aircraft design has many trade-offs
• Airlines want:

• Low running cost and greater capacity

• Passengers want:
• Speed and comfort at a low cost

• People on the ground want:
• Less noise, less environmental impact

•  Design for greater lift to drag & less noise
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Aerion AS2 (old design)
(Original: https://www.aerionsupersonic.com/) 

Boom Overture
(Original: http://boomsupersonic.com/) 

Lockheed Martin X-59 QueSST
(Original: https://nasa.gov) 

https://www.aerionsupersonic.com/


Supersonic Transports 2
• Supersonic flight creates shockwaves

• The shocks are propagated to the ground

• Performance and noise affected by design!

Low-Boom SSTs

4Pressure extraction line

CFD Pressure Extraction

Atmospheric
Propagation

Ground level noise prediction process 
(Original: Plotkin, 1989) 



Study Aims
• Optimise: “Realistic” SST by wing planform (sectional-shape) design

• Low drag (inviscid)
• Low ground-level noise (A-weighted)
• Subject to: minimum lift constraint and geometric constraints

• Using: EHVI-Kriging Believer-based BO framework
• Compare the effectiveness of solvers

• Gradient-based vs GA solver for EHVI optimisation
• 6-var problem vs 11-var problem
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Modified 69-degree Delta-Wing Body

(Original: Hunton, 1973) 



Parameterisation Models
1-Section Wing (6 Var.) 2-Section Wing (11 Var.)
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Symbol Parameter Min Max

𝒙𝒙 x-location of wing (m) 0.05 0.1
𝒛𝒛 z-location of wing (m) -0.0045 0.0045

𝜦𝜦𝑳𝑳𝑳𝑳 leading edge sweep (°) -65 75
𝜞𝜞 dihedral (°) -15 15
𝒄𝒄𝒓𝒓 root chord (m) 0.04 0.11
𝒕𝒕𝒓𝒓 root thickness / chord 0.02 0.1

Symbol Min Max

𝒙𝒙 0.05 0.1
𝒛𝒛 -0.0045 0.0045

𝜦𝜦𝑳𝑳𝑳𝑳𝟏𝟏 -65 75
𝜞𝜞𝟏𝟏 -30 30
𝒄𝒄𝟏𝟏 0.03 0.11
𝒕𝒕𝟏𝟏 0.02 0.1
𝒃𝒃𝟏𝟏 0.01 0.06

Symbol Min Max

𝜦𝜦𝑳𝑳𝑳𝑳𝟐𝟐 -65 75
𝜞𝜞𝟐𝟐 -45 45
𝒄𝒄𝟐𝟐 0.021 0.11
𝒕𝒕𝟐𝟐 0.02 0.1

𝑆𝑆

𝑆𝑆 = 0.00165529 m2

N.B. All wings use a diamond cross-section.  

𝑆𝑆 = 𝑆𝑆1 + 𝑆𝑆2
0.3𝑆𝑆 < 𝑆𝑆1 < 0.9𝑆𝑆

Wingtip > 7°



Objectives, Constraints, and Settings
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Objective 1 Minimize inviscid drag (CD )

Objective 2 Minimize A-weighted ground-level noise (dBA) 

Constraint 1 
(“expensive”)

Lift coefficient (CL ≥ 0.15)

Constraints 2, 3 
(“cheap”)

Geometric constraints

Objectives and Constraints CFD (SU2)
Angle of attack (𝛼𝛼) 4.9°

Mach number (M) 1.7

Flight altitude 55,000 ft (Std. Atm.)

Atmospheric Boom Propagation
(NASA sBOOM)
Pressure extraction radius ~2.5 body-lengths

Wave discretisation 3000 points

Extraction angles 0°
Reflection factor 1.9

Model scale 0.0065

 

𝑆𝑆 = 𝑆𝑆1 + 𝑆𝑆2
0.3𝑆𝑆 < 𝑆𝑆1 < 0.9𝑆𝑆

Wingtip > 7°



Optimization 
Workflow



Initial 
Sampling 

and 
Evaluation



Lift, Drag, and Noise
• CFD evaluates the aircraft near-field (SU2)

• Lift, inviscid drag, near-field pressure

• Atmospheric propagation of near-field 
pressure to the far-field (NASA sBOOM)

• Noise (dBA) evaluated from far-field pressure
• Assuming no wind or turbulence
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Overpressure

CFD at flight altitude

Near-field Pressure extraction line (not to scale)



Gaussian 
Process



Kriging (Gaussian Process) Model

• GP models predict a system’s outcome
• Model relationship between:

• Input variables 𝑿𝑿 = {𝒙𝒙 1 , … ,𝒙𝒙(𝑛𝑛)} and 
• Response 𝒚𝒚 = 𝑦𝑦 1 , … , 𝑦𝑦 𝑛𝑛

• Using Gaussian autocorrelation
• Hyperparameters 𝜽𝜽 are optimized

• Maximising the ln-likelihood function
• 𝜽𝜽 = {𝜃𝜃1, … ,𝜃𝜃𝑚𝑚}, represent variable length scales

• Produce a prediction and its uncertainty

• Useful in the place of expensive evaluations
• CFD!
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Kriging (Gaussian Process) Model
• GP models predict system’s outcome by modeling relationship between system input variables 
𝑿𝑿 = {𝒙𝒙 1 , … ,𝒙𝒙(𝑛𝑛)} and its corresponding response 𝒚𝒚 = {𝑦𝑦 1 , … ,𝑦𝑦(𝑛𝑛)} using Gaussian 
autocorrelation:

𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦 𝒙𝒙 𝑖𝑖 ,𝑦𝑦 𝒙𝒙 𝑙𝑙 = exp −0.5�
𝑗𝑗=1

𝑚𝑚 𝑥𝑥𝑗𝑗
𝑖𝑖 − 𝑥𝑥𝑗𝑗

𝑙𝑙

𝜃𝜃𝑗𝑗

𝟐𝟐

• Hyperparameters 𝜽𝜽 = {𝜃𝜃1, … , 𝜃𝜃𝑚𝑚}, which represents the length scale of each variable dimension 
that needs to be optimized by maximizing ln-likelihood function to obtain an accurate Kriging 
model.

• In our case, we use a gradient-based optimizer with 5 different starting points to optimize the 
hyperparameter. 

• Prediction at the unobserved input 𝒙𝒙∗ can be estimated using the following equation
�𝑦𝑦 𝒙𝒙∗ = �𝜇𝜇 + 𝝍𝝍𝑇𝑇𝚿𝚿−1(𝒚𝒚 − 𝟏𝟏�𝜇𝜇)
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Maximising 
EHVI

(Gradient vs GA)



Constrained EHVI
• EHVI formulation:

• EHVI 𝒙𝒙 = ∫𝑦𝑦∈𝑉𝑉𝑛𝑛𝑛𝑛 𝐼𝐼 �⃗�𝑦,𝑃𝑃 � PDF𝐱𝐱 �⃗�𝑦 𝑑𝑑�⃗�𝑦
• (Emmerich et.al, 2008)

• As we deal with both expensive and cheap 
constraint, EHVI value is modified:

• EHVIconstrained 𝑥𝑥 = EHVI 𝑥𝑥 � ∏𝑖𝑖=1
𝑛𝑛_𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐 PoF𝑖𝑖(𝑥𝑥)

• Probability of Feasibility (PoF) for cheap 
constraints is 1 (feasible) or 0 (violated)

• For expensive constraints

• PoF 𝒙𝒙∗ = 1
�̂�𝑐 2𝜋𝜋 ∫0

∞ exp − 𝐹𝐹− �𝑔𝑔 𝒙𝒙∗ 2

2 �̂�𝑐2
𝑑𝑑𝑑𝑑

• (Forrester, Sóbester, Keane, 2008)
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For a more-detailed explanation, see:
Shimoyama, Jeong, Obayashi, 2013, Kriging-surrogate-based optimization considering expected hypervolume
improvement in non-constrained many-objective test problems



Kriging 
Believer 

Loop



Kriging Believer and Optimizers
• EHVI produces single candidate

samples per update – slow!
• Kriging Believer (KB) with 5 updates 

per batch is implemented to 
accelerate sample generation & 
evaluation

• To maximize EHVI we compare
2 optimizers:

• L-BFGS-B from SciPy with 5 different 
starting points for hyperparameter 
optimisation

• GA with localised search near ND 
front points (GA + ENDS)
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Effective Non-Dominant Sampling (ENDS)
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• EHVI performs poorly with saturated 
regions on the ND front

• ENDS is our approach to localize the EHVI 
search of the next candidate

• In place initialising random sampling across 
the design space

• Generate normal distributions around each of 
the ND points

• Each ND point is used as the mean of each 
distribution

• Standard deviation of the distribution is 
defined as 0.2 of the initial dataset’s standard 
deviation for each design variable

Objective-space

Feature-space

N.B. Feature dimensions
reduced for visualisation



6-variable dataset 11-variable dataset

July 9, 2020
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Objective-Space Results (Noise vs Drag)

Gradient: Initial  13 updates
GA: (Initial + gradient-based sols. up to 6th update)  7 updates

Gradient: Initial  2 updates
GA: (Initial + gradient-based sols.)  8 updates
GA-ENDS: (All previous)  2 updates



6-Variable Results
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Low noise

Low drag
Lower surface pressures

Upper surface pressures

Low noise

Low drag

Low noiseLow drag

Aerodynamic and noise parameters as a percentage of the baseline

70.2

0.1534

0.0148

10.34

68.5

0.1529

0.0163

9.36

-20% -10% 0% 10% 20%

dB(A)

CL

CD

CL/CD

Low drag Low noise

Baseline (AS00)

𝐝𝐝𝐝𝐝(A) 72.56

𝑪𝑪𝑳𝑳 0.1567

𝑪𝑪𝑫𝑫 (counts) 176.8

Common Points
• High spans (low chord)
• High sweeps
• Positive dihedral
• High fuselage position

For Low Drag:
• Thinner wing
• More sweep
• Aftward position



11-Variable Results (GA-ENDS)
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0.157

0.152

0.153

0.163

0.0177

0.0150

0.0156

0.0172

72.6

70.1

68.8

67.6

80% 85% 90% 95% 100% 105% 110%

AS00

AT159

AT167

AT165

CL

CD Euler

dB(A)

AT159 AT167 AT165

Decreasing NoiseDecreasing Drag

Common Points
• High spans (low chords)
• High sweeps

• Leading and trailing edges
• Small outboard sections
• Section thicknesses

• Thicker inboard, thinner outboard 
• Positive dihedral



Design Diversity
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0.157

0.152

0.156

0.0177

0.0243

0.0243

0.0334

0.0432

0.0446

72.6

71.6

71.6

80% 100% 120% 140% 160% 180%

AS00

AT084

AT183

CL

CD Euler

CD Total

dB(A)

AT084 AT0183



Concluding Points
• Constrained EHVI BO + Kriging Believer was used to optimize a supersonic wing planform

• Using a gradient-based solver and genetic algorithm
• For 6-var and 11-var parameterisations

• The GA-based solver could find solutions which gradient-based solver could not
• At a time penalty (~10x)
• Caution – GA results continued the search from some of the gradient-based results

• 6-var vs 11-var parameterisation
• 6-var:  ND points were probably limited by parameterisation
• 11-var: Diverse set of designs sampled but, the ND front was represented by a small set of similar solutions

• Further work
• Testing of ENDS for more complex datasets
• Include an estimate of skin friction drag
• Drag reduction driving thin wings and high spans

• Stricter wing-span constraints
• Explore further from the undertrack
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Discussion & Questions
Thanks for listening!
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