



Bayesian Methods for Multi-Objective Optimization of a Supersonic Wing Planform

Timothy M. S. Jim Ghifari A. Faza Pramudita S. Palar Koji Shimoyama



#### Contents

- Introduction to SSTs
- Study aims
- Analysis geometry
- Workflow walk-through
- Results



Concorde in flight. Photo: Eduard Marmet, 1986

## Supersonic Transports 1

- Revival of interest in commercial SSTs
- Aircraft design has many trade-offs
- Airlines want:
  - Low running cost and greater capacity
- Passengers want:
  - Speed and comfort at a low cost
- People on the ground want:
  - Less noise, less environmental impact
- $\rightarrow$  Design for greater lift to drag & less noise





Aerion AS2 (old design) (Original: <u>https://www.aerionsupersonic.com/</u>)



Boom Overture (Original: http://boomsupersonic.com/)



Lockheed Martin X-59 QueSST (Original: https://nasa.gov)



### Supersonic Transports 2

- Supersonic flight creates shockwaves
  - The shocks are propagated to the ground
- Performance and noise affected by design!





Ground level noise prediction process (Original: Plotkin, 1989)



## Study Aims

- Optimise: "Realistic" SST by wing planform (sectional-shape) design
  - Low drag (inviscid)
  - Low ground-level noise (A-weighted)
  - Subject to: minimum lift constraint and geometric constraints
- Using: EHVI-Kriging Believer-based BO framework
- Compare the effectiveness of solvers
  - Gradient-based vs GA solver for EHVI optimisation
  - 6-var problem vs 11-var problem





### Parameterisation Models

#### 1-Section Wing (6 Var.)

| Symbol          | Parameter              | Min     | Max    |
|-----------------|------------------------|---------|--------|
| X               | x-location of wing (m) | 0.05    | 0.1    |
| Z               | z-location of wing (m) | -0.0045 | 0.0045 |
| Λ <sub>LE</sub> | leading edge sweep (°) | -65     | 75     |
| Γ               | dihedral (°)           | -15     | 15     |
| c <sub>r</sub>  | root chord (m)         | 0.04    | 0.11   |
| t <sub>r</sub>  | root thickness / chord | 0.02    | 0.1    |



#### N.B. All wings use a diamond cross-section.

#### 2-Section Wing (11 Var.)





55,000 ft (Std. Atm.)

 $\sim$ 2.5 body-lengths

3000 points

0°

1.9

0.0065

4.9°

1.7

### Objectives, Constraints, and Settings

#### **Objectives and Constraints** CFD (SU2) **Objective 1** Minimize inviscid drag ( $C_{D}$ ) Angle of attack ( $\alpha$ ) **Objective 2** Minimize A-weighted ground-level noise (dBA) Mach number (*M*) **Constraint 1** Lift coefficient ( $C_1 \ge 0.15$ ) Flight altitude ("expensive") Constraints 2, 3 Geometric constraints **Atmospheric Boom Propagation** ("cheap") (NASA sBOOM) [Top] $S = S_1 + S_2$ Pressure extraction radius $0.3S < S_1 < 0.9S$ $[S_1]$ Wave discretisation Wingtip $> 7^{\circ}$ $\Lambda_{LE_1}$ $C_2$ **Extraction angles** [Front] $[S_2]$ $[b_2]$ Z 🔺 **Reflection factor** $\Lambda_{LE_2}$ Model scale $t_1$ $[c_t = 0]$

#### Optimization Workflow



Initial Sampling and Evaluation





# Lift, Drag, and Noise

- CFD evaluates the aircraft near-field (SU2)
  - Lift, inviscid drag, near-field pressure
- Atmospheric propagation of near-field pressure to the far-field (NASA sBOOM)
  - Noise (dBA) evaluated from far-field pressure
  - Assuming no wind or turbulence









### Kriging (Gaussian Process) Model



- GP models predict a system's outcome
  - Model relationship between:
    - Input variables  $\pmb{X} = \{\pmb{x}^{(1)}, \dots, \pmb{x}^{(n)}\}$  and
    - Response  $y = \{y^{(1)}, ..., y^{(n)}\}$
    - Using Gaussian autocorrelation
  - Hyperparameters  $\boldsymbol{\theta}$  are optimized
    - Maximising the In-likelihood function
    - $\boldsymbol{\theta} = \{\theta_1, \dots, \theta_m\}$ , represent variable length scales
  - Produce a prediction and its uncertainty
- Useful in the place of expensive evaluations
  CFD!

Low-Boom SSTs



# Kriging (Gaussian Process) Model

• GP models predict system's outcome by modeling relationship between system input variables  $X = \{x^{(1)}, ..., x^{(n)}\}$  and its corresponding response  $y = \{y^{(1)}, ..., y^{(n)}\}$  using Gaussian autocorrelation:

$$cor[y(\mathbf{x}^{(i)}), y(\mathbf{x}^{(l)})] = \exp\left(-0.5\sum_{j=1}^{m} \left(\frac{x_{j}^{(i)} - x_{j}^{(l)}}{\theta_{j}}\right)^{2}\right)$$

- Hyperparameters  $\theta = \{\theta_1, ..., \theta_m\}$ , which represents the length scale of each variable dimension that needs to be optimized by maximizing In-likelihood function to obtain an accurate Kriging model.
- In our case, we use a gradient-based optimizer with 5 different starting points to optimize the hyperparameter.
- Prediction at the unobserved input  $x^*$  can be estimated using the following equation

$$\hat{y}(\boldsymbol{x}^*) = \hat{\mu} + \boldsymbol{\psi}^T \boldsymbol{\Psi}^{-1} (\boldsymbol{y} - \mathbf{1}\hat{\mu})$$

#### Maximising EHVI (Gradient vs GA)





### Constrained EHVI



- EHVI formulation:
  - EHVI $(\mathbf{x}) = \int_{\vec{y} \in V_{nd}} I(\vec{y}, P) \cdot \text{PDF}_{\mathbf{x}}(\vec{y}) d\vec{y}$
  - (Emmerich et.al, 2008)
- As we deal with both expensive and cheap constraint, EHVI value is modified:
  - $\text{EHVI}_{\text{constrained}}(x) = \text{EHVI}(x) \cdot \prod_{i=1}^{n\_const} \text{PoF}_i(x)$
- Probability of Feasibility (PoF) for cheap constraints is 1 (feasible) or 0 (violated)
- For expensive constraints

• PoF(
$$\mathbf{x}^*$$
) =  $\frac{1}{\hat{s}\sqrt{2\pi}} \int_0^\infty \exp\left(\frac{-(F-\hat{g}(\mathbf{x}^*))^2}{2\,\hat{s}^2}\right) dG$ 

• (Forrester, Sóbester, Keane, 2008)

For a more-detailed explanation, see:

09 July 2020

Shimoyama, Jeong, Obayashi, 2013, Kriging-surrogate-based optimization considering expected hypervolume improvement in non-constrained many-objective test problems







## Kriging Believer and Optimizers

- EHVI produces **single candidate** samples per update slow!
- Kriging Believer (KB) with 5 updates per batch is implemented to accelerate sample generation & evaluation
- To maximize EHVI we compare **2 optimizers**:
  - L-BFGS-B from SciPy with 5 different starting points for hyperparameter optimisation
  - **GA** with localised search near ND front points (GA + ENDS)





### Effective Non-Dominant Sampling (ENDS)



- EHVI performs poorly with saturated regions on the ND front
- ENDS is our approach to *localize the EHVI search* of the next candidate
- In place initialising random sampling across the design space
  - Generate normal distributions around each of the ND points
  - Each ND point is used as the mean of each distribution
  - Standard deviation of the distribution is defined as 0.2 of the initial dataset's standard deviation for each design variable

Low-Boom SSTs



#### Objective-Space Results (Noise vs Drag)

#### 6-variable dataset

#### **11-variable dataset**



**Gradient**: Initial  $\rightarrow$  13 updates

**GA**: (Initial + gradient-based sols. up to  $6^{th}$  update)  $\rightarrow$  7 updates

82 80 78 (¥)80 76 72 70 ×¥ GA Initial AT 68 Gradient GA-ENDS 0.00 0.01 0.02 0.03 0.04 0.05 0.06  $C_D$ **Gradient**: Initial  $\rightarrow$  2 updates **GA**: (Initial + gradient-based sols.)  $\rightarrow$  8 updates

**GA-ENDS**: (All previous)  $\rightarrow$  2 updates

Low-Boom SSTs







#### 11-Variable Results (GA-ENDS)



Low-Boom SSTs



### Design Diversity





### **Concluding Points**

#### • Constrained EHVI BO + Kriging Believer was used to optimize a supersonic wing planform

- Using a gradient-based solver and genetic algorithm
- For 6-var and 11-var parameterisations

#### • The GA-based solver could find solutions which gradient-based solver could not

- At a time penalty (~10x)
- Caution GA results continued the search from some of the gradient-based results

#### • 6-var vs 11-var parameterisation

- 6-var: ND points were probably limited by parameterisation
- 11-var: Diverse set of designs sampled but, the ND front was represented by a small set of similar solutions

#### • Further work

- Testing of ENDS for more complex datasets
- Include an estimate of skin friction drag
- Drag reduction driving thin wings and high spans
  - Stricter wing-span constraints
- Explore further from the undertrack

# **Discussion & Questions**

**Thanks for listening!** 

09 July 2020

AIRE

Low-Boom SSTs

L'avenir, par Ende The future, by EADS INNO