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Figure: Surrogate management in on-line SAEA.
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Infill Sampling Criteria

Three types
» The optimum of the surrogate model can improve the exploitation
ability of the surrogate model.

» The most uncertain points of the surrogate model can help
improve the exploration ability by searching the unexplored
regions.

» Combination of the former two types, ExI and LCB for instance.
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An Example
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Figure: Surrogate model based on initial samples.
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An Example: Update by the optimum

O Samples
/A Optimum of the surrogate model
A The most uncertain solution

Figure: Surrogate model based on initial samples and the optimum of the
surrogate model.
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An Example: Update by the most un-
certain solution

O Samples
\ L /A Optimum of the surrogate model
\ e A The most uncertain solution
\\ //
solution.

X
Figure: Surrogate model based on initial samples and the most uncertain
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Benefits of Uncertain Solutions

Error analysis

> y = £(x)
> = H(x)
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Benefits of Uncertain Solutions

Error analysis
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Benefits of Uncertain Solutions

Error analysis

> y = f(x)

> § =1f(x)

> f(X) = F(X) + £(x)

> f(X) — f(X*) > e(x) — e(x*)
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Benefits of Uncertain Solutions

Error analysis

> y=1fx)
> 7 =Hx)

> f(x) = f(x) + =(x)

> f(X) — f(x*) > e(X) — e(x*)

> =(x) — e(x*) of any solution x to the optimum x* should not be
larger than the differences of their exact FE values, or the
searching on f(x) will be led to other solutions rather than x*.

~~>
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Benefits of Uncertain Solutions

Error analysis

> y=1fx)
>y =1(x)
> f(x) = f(x) + =(x)
> f(X) — f(x*) > e(X) — e(x*)

> =(x) — e(x*) of any solution x to the optimum x* should not be
larger than the differences of their exact FE values, or the

searching on ?(x) will be led to other solutions rather than x*.

~>

Benefits

» Exploration for x*.
» Reduction for £(x).
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Uncertainty Measurement

Sample Uncertainty

» Variance in the Kriging model: It can provide a confidence level
of the predictions but lose performance when the decision space
is of high dimensions.

» Distance-based metrics: They evaluate the distance to the
existing sample points but have problems on the computational
cost and indexing peroformance in the high-dimensional space.

Model Uncertainty

» Ensemble: The differences of the errors of different models, so
multiple diverse models are required.
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Weakness of the Kriging model

The average std of the variance of 10000 random samples on the
Kriging model built by 11d samples is shown below.

STD of the variance of the prediction in the Kriging model

. . . . .
0 5 10 15 20 25 30
Mo. of decision variable

Figure: STD of the variance of the prediction in the Kriging model on the
Rastrigin problem.
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Weakness of the Kriging model

Disadvantages of the Kriging model

» Computational complexity

» Less-effective confidence level of the predictions for
high-dimensional problems

Reason

» Calculation of hyper-parameter and correlation

» Correlation function loses performance in the high-dimensional
space
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An Alternative Option for Uncertainty

Measurement

Using an ensemble consisting of a large number of computationally
very efficient models that might provide useful uncertainty information
similar to the Kriging model.

» Train data: 11d samples

» Test data: 1000 samples

» Model: Kriging and random forest (50 CARTS)
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Figure: MSE of the Kriging model and random forrest on the Griewank
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Experiment Settings

Infill sampling criteria: LCB (ficp(x) = ?(x) — ws(x))
Model: Kriging and random forest (500 CARTS)
Independent runs: 30

Test problems: with 10 and 30 decision variables

vV v v v
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Results:Ellipsoid

Ellipsoid with 10 decision variables Ellipsoid with 30 decision variables
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Figure: Convergence curve of the Kriging model and random forrest on the
Ellipsoid problem.

Handing Wang handing.wang@surrey.ac.uk | Uncertainty in Surrogate Models


mailto:handing.wang@surrey.ac.uk

Results:Rosenbrock

Rosenbrock with 10 decision variables Rosenbrock with 30 decision variables
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Figure: Convergence curve of the Kriging model and random forrest on the
Rosenbrock problem.
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Results:Griewank

Griewank with 10 decision variables

Griewank with 30 decision variables
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Figure: Convergence curve of the Kriging model and random forrest on the

Griewank problem.
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Results:Rastrigin

Rastrigin with 10 decision variables Rastrigin with 30 decision variables
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Figure: Convergence curve of the Kriging model and random forrest on the
Rastrigin problem.
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Results:Ackley

Ackley with 10 decision variables
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Figure: Convergence curve of the Kriging model and random forrest on the

Ackley problem.
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» Model uncertainty is comparable with sample uncertainty for
low-dimensional problems.

» Model uncertainty is significantly better than sample uncertainty
for high-dimensional problems.

» |t needs a large number of models to obtain the information of
uncertainty.
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Thank you!
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