

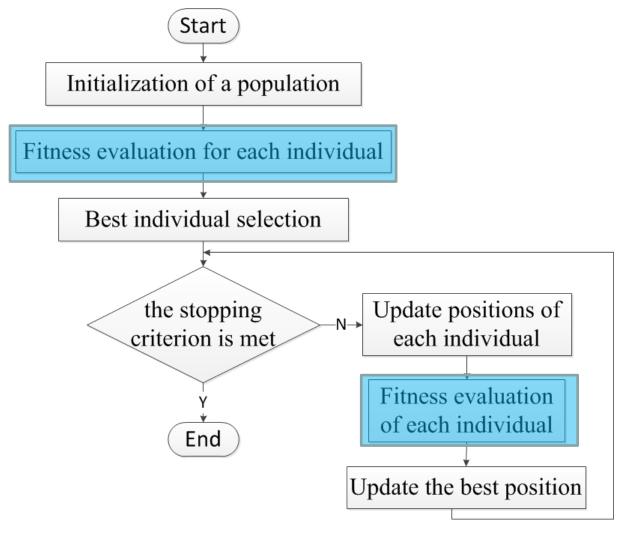
TAIYUAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Fitness Approximated Assisted Competitive Swarm Optimizer for High Dimensional Expensive Problems

Dr. Chaoli Sun

Department of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China,

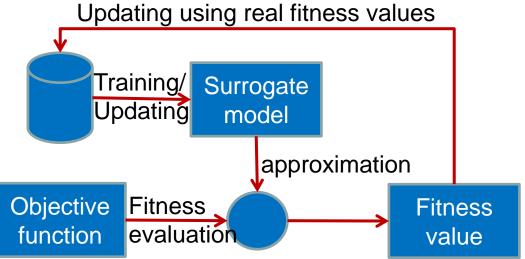
Department of Computer Science, University of Surrey, Guildford GU2 7XH, United Kingdom


c.sun@surrey.ac.uk, chaoli.sun.cn@gmail.com

Outline

- Motivation
- Competitive Swarm Optimizer (CSO)
- Fitness Approximation Assisted Competitive Swarm Optimizer (FAACSO)
- Experimental Results and Analysis
- Summary

• Minimum mass of a vehicle front structure


- 12 hours for fine model and 2 hours for coarse model

[1] Jansson T, Nilsson L, Redhe M. Using surrogate models and response surfaces in structural optimization–with application to crashworthiness design and sheet metal forming Structure and Multidisciplinary Optimization, 2003, 25(2): 129-140.

Fitness Approximation Techniques

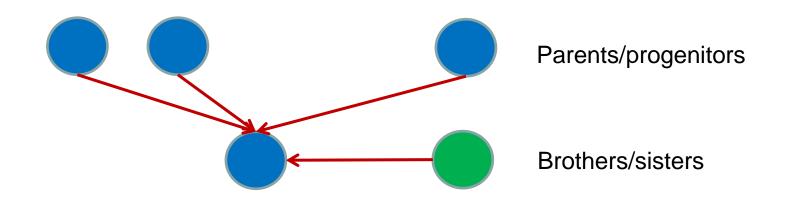
Surrogate models

Global and local surrogates

Global and Local Surrogates

- Global surrogate
- Exact function Approxiantion function Data point Exact local optimum f(x) 52 ▲ Approximated local optimum х Exact function Approximation function Data point Exact fitness ☆ f(x) Approximated fitness

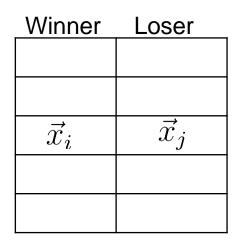
х



Local surrogate

Global and Local Surrogates

Fitness Inheritance



[1] Chaoli Sun et al. A new fitness estimation strategy for particle swarm optimization University of Information Sciences, 2013, 221: 355-370.

Competitive Swarm Optimizer

• Principle

 $v_{i,d}(t+1) = r_{i1,d}(t+1)v_{i,d}(t) + r_{i2,d}(t+1)(x_{w,d}(t) - x_{i,d}(t)) + \varphi r_{i3,d}(t+1)(\bar{x}_d(t) - x_{i,d}(t))$

$$x_{i,d}(t+1) = x_{i,d}(t) + v_{i,d}(t+1)$$

[1] Ran Cheng, Yaochu Jin. A Competitive Swarm Optimizer for Large-scale Optimization of FFFF Transactions on Cybernetics, 2015, 45(2): 191-205

Fitness Approximated Assisted Competitive Swarm Optimizer

$$\begin{aligned} \mathbf{x}_{i}(t_{1}+1) &= \mathbf{x}_{i}(t_{1}) + \mathbf{r}_{i1}(t_{1}+1)\mathbf{v}_{i}(t_{1}) + \\ &\mathbf{r}_{i2}(t_{1}+1)(\mathbf{x}_{wi}(t_{1}) - \mathbf{x}_{i}(t_{1})) + \varphi \mathbf{r}_{i3}(t_{1}+1)(\bar{\mathbf{x}}(t_{1}) - \mathbf{x}_{i}(t_{1})) \\ &= \mathbf{x}_{i}(t_{1}) + \mathbf{r}_{i1}(t_{1}+1)(\mathbf{x}_{i}(t_{1}) - \mathbf{x}_{i}(t_{1}-1)) + \\ &\mathbf{r}_{i2}(t_{1}+1)(\mathbf{x}_{wi}(t_{1}) - \mathbf{x}_{i}(t_{1})) + \varphi \mathbf{r}_{i3}(t_{1}+1)(\bar{\mathbf{x}}(t_{1}) - \mathbf{x}_{i}(t_{1})) \end{aligned}$$

$$\begin{aligned} \mathbf{x}_{j}(t_{2}+1) &= \mathbf{x}_{j}(t_{2}) + \mathbf{r}_{j1}(t_{2}+1)\mathbf{v}_{j}(t_{2}) + \\ &\mathbf{r}_{j2}(t_{2}+1)(\mathbf{x}_{wj}(t_{2}) - \mathbf{x}_{j}(t_{2})) + \varphi \mathbf{r}_{j3}(t_{2}+1)(\bar{\mathbf{x}}(t_{2}) - \mathbf{x}_{j}(t_{2})) \\ &= \mathbf{x}_{j}(t_{2}) + \mathbf{r}_{j1}(t_{2}+1)(\mathbf{x}_{j}(t_{2}) - \mathbf{x}_{j}(t_{2}-1) + \\ &\mathbf{r}_{j2}(t_{2}+1)(\mathbf{x}_{wj}(t_{2}) - \mathbf{x}_{j}(t_{2})) + \varphi \mathbf{r}_{j3}(t_{2}+1)(\bar{\mathbf{x}}(t_{2}) - \mathbf{x}_{j}(t_{2})) \end{aligned}$$

Fitness Approximated Assisted Competitive Swarm Optimizer

$$\begin{aligned} \mathbf{x}_{v} &= \mathbf{x}_{i}(t_{1}+1) + \mathbf{r}_{i1}(t_{1}+1) \mathbf{x}_{i}(t_{1}-1) \\ &+ (1 + \mathbf{r}_{j1,d}(t_{2}+1) - \mathbf{r}_{j2}(t_{2}+1) - \varphi \mathbf{r}_{j3}(t_{2}+1)) \mathbf{x}_{j}(t_{2}) \\ &+ \mathbf{r}_{j2}(t_{2}+1) \mathbf{x}_{wj}(t_{2}) + \varphi \mathbf{r}_{j3}(t_{2}+1) \mathbf{\bar{x}}(t_{2}) \\ &= \mathbf{x}_{j}(t_{2}+1) + \mathbf{r}_{j1}(t_{2}+1) \mathbf{x}_{j}(t_{2}-1) \\ &+ (1 + \mathbf{r}_{i1}(t_{1}+1) - \mathbf{r}_{i2}(t_{1}+1) - \varphi \mathbf{r}_{i3}(t_{1}+1)) \mathbf{x}_{i}(t_{1}) \\ &+ \mathbf{r}_{i2}(t_{1}+1) \mathbf{x}_{wi}(t_{1}) + \varphi \mathbf{r}_{i3}(t_{1}+1) \mathbf{\bar{x}}(t_{1}) \end{aligned}$$

$$f(\mathbf{x}_v) = \phi_1(\mathbf{x}_i(t_1+1), \mathbf{x}_i(t_1-1), \mathbf{x}_j(t_2), \mathbf{x}_{wj}(t_2), \bar{\mathbf{x}}(t_2))$$

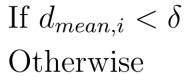
= $\phi_2(\mathbf{x}_j(t_2+1), \mathbf{x}_j(t_2-1), \mathbf{x}_i(t_1), \mathbf{x}_{wi}(t_1), \bar{\mathbf{x}}(t_1))$

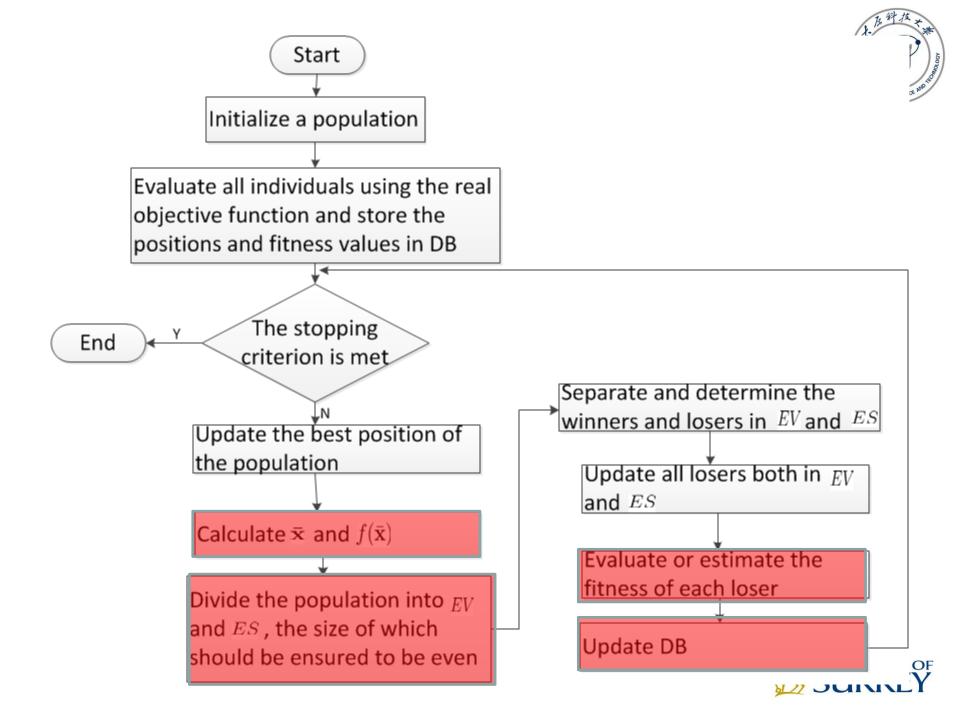
Fitness Approximated Assisted Competitive Swarm Optimizer

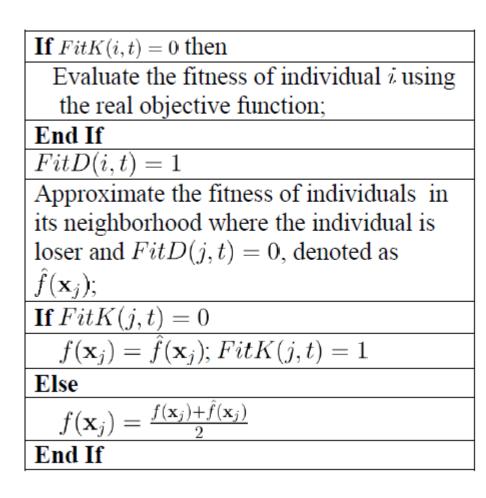
$$f(\mathbf{x}_{i}(t_{1}+1)) = d_{v,i}(t_{1}+1)(\gamma f_{1} - f_{2})$$

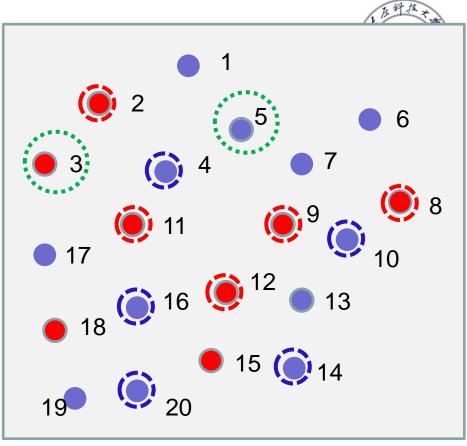
$$\gamma = \frac{\frac{1}{d_{v,i}(t_{1}+1)} + \frac{1}{d_{v,i}(t_{1}-1)} + \frac{1}{d_{v,j}(t_{2})} + \frac{1}{d_{v,wj}(t_{2})} + \frac{1}{d_{v,av}(t_{2})}}{\frac{1}{d_{v,j}(t_{2}+1)} + \frac{1}{d_{v,j}(t_{2}-1)} + \frac{1}{d_{v,i}(t_{1})} + \frac{1}{d_{v,wi}(t_{1})} + \frac{1}{d_{v,av}(t_{1})}}{\frac{1}{d_{v,j}(t_{2}+1)}}$$

$$f_{1} = \frac{f(\mathbf{x}_{j}(t_{2}+1))}{d_{v,j}(t_{2}+1)} + \frac{f(\mathbf{x}_{j}(t_{2}-1))}{d_{v,j}(t_{2}-1)} + \frac{f(\mathbf{x}_{i}(t_{1}))}{d_{v,i}(t_{1})} + \frac{f(\mathbf{x}_{wi}(t_{1}))}{d_{v,wi}(t_{1})} + \frac{f(\mathbf{x}_{wi}(t_{1}))}{d_{v,wi}(t_{1})} + \frac{f(\mathbf{x}_{i}(t_{1}))}{d_{v,wi}(t_{1})}$$


$$f_2 = \frac{f(\mathbf{x}_i(t_1 - 1))}{d_{v,i}(t_1 - 1)} + \frac{f(\mathbf{x}_j(t_2))}{d_{v,j}(t_2)} + \frac{f(\mathbf{x}_{wj}(t_2))}{d_{v,wj}(t_2)} + \frac{f(\bar{\mathbf{x}}(t_2))}{d_{v,av}(t_2)}$$

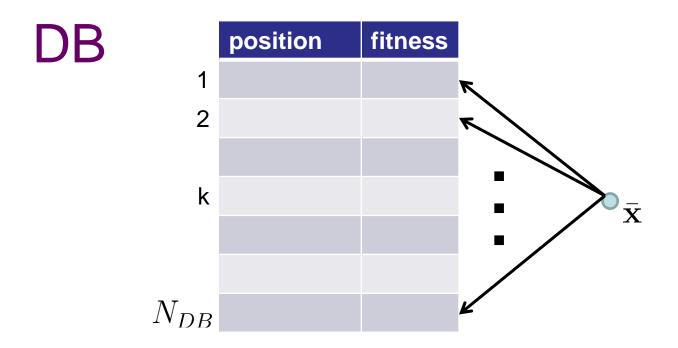



$$\delta = \frac{\sum_{k=1}^{N_{DB}} d_{mean,k}}{N_{DB}}$$


$$f(\vec{\bar{x}}) = \frac{\sum_{i=1}^{N_{DB}} \lambda_i f(\vec{x}_i)}{\sum_{i=1}^{N_{DB}} \lambda_i}, \text{ where } \lambda_i = \begin{cases} \frac{1}{d_{mean,i}}, \\ 0, \end{cases}$$

Loser individual in ES

- Winner individual in ES
- Loser individual in EV


Winner individual in EV

Individual whose fitness is estimated

Update DB

$$d_{max} = max\{d_{mean,k}, k = 1, 2, \dots, N_{DB}\}$$

 $d_{mean,i} < d_{max}$

Experimental results

Stop condition: 10*D

Table 1 Characteristics of the CEC'08 benchmark functions

Benchmark functions	Main characters	Decision spaces
Shifted Sphere Function (F1) Shifted Schwefels Problem 2.21 (F2) Shifted Rosenbrocks Function (F3) Shifted Rastrigins Function (F4) Shifted Griewanks Function (F5) Shifted Ackleys Function (F6) FastFractal DoubleDip Function (F7)	Unimodal, Separable Unimodal, Non-separable Multimodal, Non-separable Multimodal, Separable Multimodal, Non-separable Multimodal, Separable Multimodal, Non-separable	$\begin{array}{l} [-100, 100]^{D} \\ [-100, 100]^{D} \\ [-100, 100]^{D} \\ [-5, 5]^{D} \\ [-600, 600]^{D} \\ [-32, 32]^{D} \\ [-1, 1]^{D} \end{array}$

Experimental results

Table 3 Statistical results on 100-D benchmark functions

	Approach	Best	Mean(t-test)	Worst	Std.
F1	FAACSO	1.7335e + 005	1.9590e + 005	2.3601e + 005	1.7157e + 004
	FESPSO	1.4077e + 005	$1.9207e + 005(\approx)$	2.3089e + 005	2.4205e + 004
	CSO	2.0817e + 005	2.5613e + 005(+)	2.9461e + 005	1.8638e + 004
F2	FAACSO	1.0590e + 002	1.1823e + 002	1.3060e+002	6.3778e + 002
	FESPSO	1.1928e + 002	1.3198e + 002(+)	1.4040e+002	6.5366e + 002
	CSO	1.1775e + 002	1.2378e + 002(+)	1.3554e + 002	4.5202e + 002
F3	FAACSO	5.6133e + 010	7.7159e + 010	1.0127e + 011	1.0714e + 010
	FESPSO	7.1568e + 010	1.0259e + 011(+)	1.3190e + 011	1.7028e + 010
	CSO	7.8650e + 010	1.0322e + 011(+)	1.2271e+011	1.0832e + 010
F4	FAACSO	1.3248e + 003	1.5064e + 003	1.6091e + 003	7.4953e + 001
	FESPSO	1.3213e + 003	$1.5567e + 003 \approx$	1.7582e + 003	1.1626e + 002
	CSO	1.4944e + 003	1.6279e + 003(+)	1.7252e + 003	5.8152e + 001
F5	FAACSO	1.3876e + 003	1.6787e + 003	1.9117e + 003	1.4152e + 002
	FESPSO	1.3271e + 003	$1.6440e + 003 \approx$	1.9728e + 003	1.7590e + 002
	CSO	1.7574e + 003	2.0445e + 003(+)	2.2589e + 003	1.4006e + 002
F6	FAACSO	2.0136e+001	2.0446e + 001	2.0716e+001	1.7789e-001
	FESPSO	2.0701e + 001	2.1194e + 001(+)	2.1350e+001	1.5751e-001
	CSO	2.0568e + 001	2.0767e + 001(+)	2.0997e+001	1.1942e-001
F7	FAACSO	-3.4253e + 005	-2.9174e + 005	-2.4906e + 005	2.4732e + 004
	FESPSO	-4.2135e+005	$-2.9444e + 005 (\approx)$	-2.4981e + 005	1.9677e+004
	CSO	-3.1958e + 005	$-2.8311e + 005 (\approx)$	-2.5382e + 005	4.1265e + 004

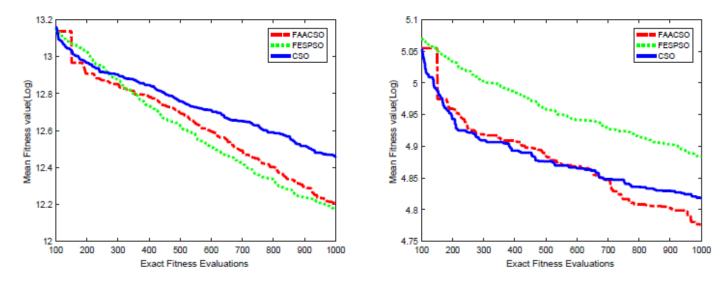


Fig. 1 The convergence profiles on 100-D F1 Fig. 2 The convergence profiles on 100-D F2

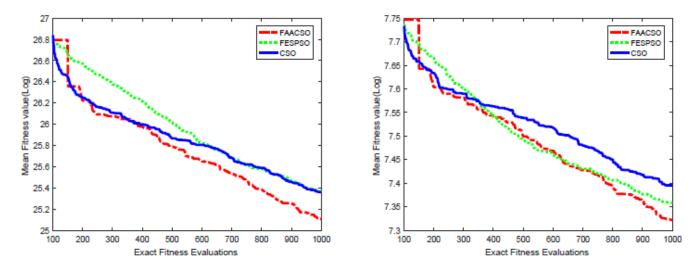


Fig. 3 The convergence profiles on 100-D F3 Fig. 4 The convergence profiles on 100-D F4

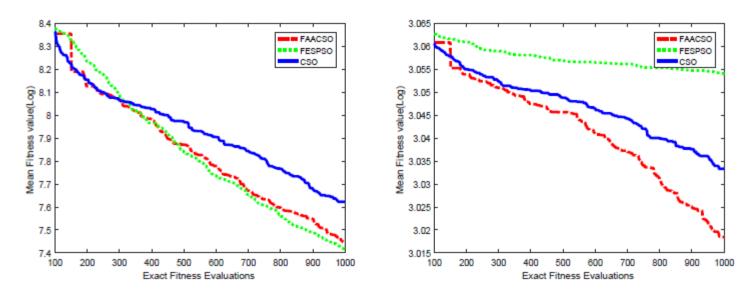


Fig. 5 The convergence profiles on 100-D F5 Fig. 6 The convergence profiles on 100-D F6

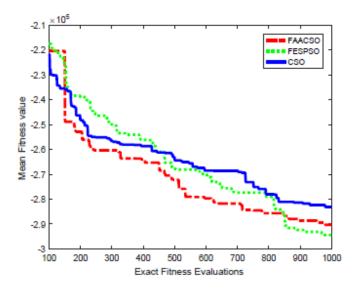


Fig. 7 The convergence profiles on 100-D F7 $\,$

Experimental results

Table 4 Statistical results on 500-D benchmark functions

	Approach	Best	Mean(t-test)	Worst	Std.
	FAACSO	6.2815e + 005	7.1431e + 005	7.8486e + 005	4.5956e + 004
F1	FESPSO	1.5635e + 006	1.6874e + 006(+)	1.8512e + 006	9.0506e + 004
	CSO	7.1310e + 005	7.8586e + 005(+)	8.7976e + 005	4.2265e + 004
F2	FAACSO	1.2939e + 001	1.3375e + 001	1.3904e + 001	2.5659e + 000
	FESPSO	1.6017e + 001	1.6636e + 001(+)	1.7213e+001	3.2873e + 000
	CSO	1.2701e + 001	$1.3369e + 001(\approx)$	1.3859e + 001	2.7624e + 000
F3	FAACSO	2.7731e + 011	3.3270e + 011	4.0340e + 011	3.7787e + 010
	FESPSO	1.1732e + 012	1.5533e + 012(+)	1.8828e + 012	1.7466e + 011
	CSO	3.0338e + 011	3.6324e + 011(+)	4.4818e + 011	3.1559e + 010
F4	FAACSO	6.9856e + 003	7.2720e+003	7.4724e + 003	1.4764e + 002
	FESPSO	9.4527e + 003	9.7891e + 003(+)	1.0356e + 004	2.8815e + 002
	CSO	7.0410e + 003	$7.2967e + 003 \approx$	7.5764e + 003	1.5208e + 002
F5	FAACSO	5.1111e + 003	5.7416e + 003	6.2712e + 003	3.3004e + 002
	FESPSO	1.3456e + 004	1.5001e + 004(+)	1.6392e + 004	8.3937e + 002
	CSO	5.9189e + 003	6.4688e + 003(+)	6.9645e + 003	3.4823e + 002
F6	FAACSO	1.9736e + 001	1.9953e+001	2.0154e + 001	1.2610e-001
	FESPSO	2.1169e + 001	2.1287e + 001(+)	2.1361e + 001	6.0903 e-002
	CSO	1.9702e + 001	2.0059e + 001(+)	2.0268e + 001	1.5179e-001
F7	FAACSO	-1.1617e + 006	-1.0735e+006	-1.0122e+006	4.0896e + 004
	FESPSO	-1.0425e+006	-9.5609e + 005(+)	-8.5244e + 005	5.8683e + 004
	CSO	-1.1849e + 006	-1.0400e+006(+)	-9.8103e + 005	4.5496e + 004

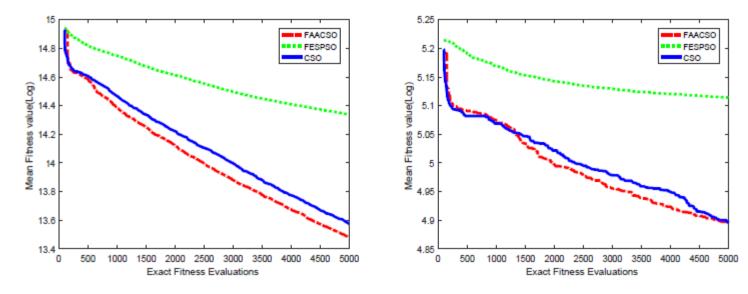


Fig. 8 The convergence profiles on 500-D F1 Fig. 9 The convergence profiles on 500-D F2

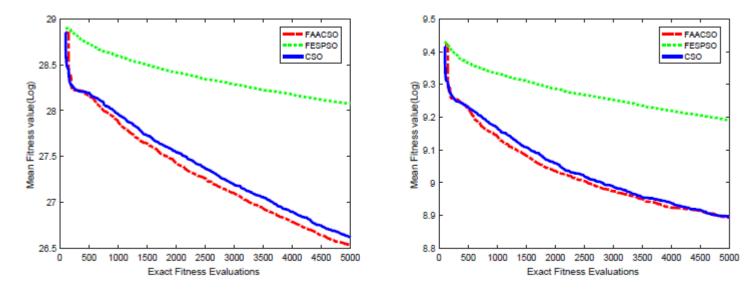


Fig. 10 The convergence profiles on 500-D Fig. 11 The convergence profiles on 500-D F3 F4

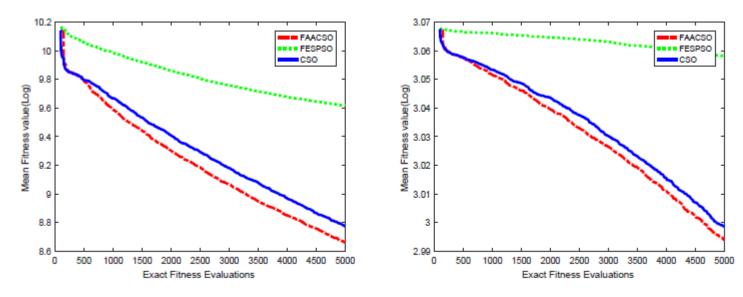


Fig. 12 The convergence profiles on 500-D Fig. 13 The convergence profiles on 500-D $\overline{F_{5}}$

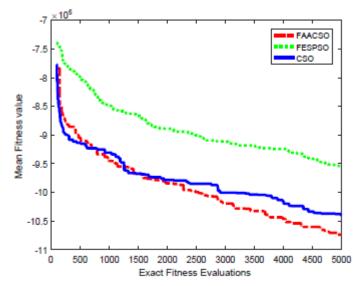


Fig. 14 The convergence profiles on 500-D F7 $\,$

Future works

- Combine global and local surrogate models
- Fitness approximation assisted multi/many objective optimization
- Applications in the real engineering problems

Thanks!

