

Cenaero

A surrogate-based evolutionary algorithm for highly constrained design problems

SAEOpt – Surrogate-Assisted Evolutionary Optimisation Workshop @Gecco 2017 July, 16

> Dr. Charlotte Beauthier, Paul Beaucaire, Caroline Sainvitu Senior Research Engineer – Minamo Team Contact: charlotte.beauthier@cenaero.be

Cenaero : Mission & Competencies

Cenae

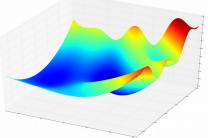
• Private research center (Gosselies, Belgium)

To develop and provide methodologies and simulation tools to innovative companies in their design of more competitive products

 Multi-scale and multi-physics modeling and design optimization niche capabilities

SAEOpt Workshop @Gecco - July, 16 2017

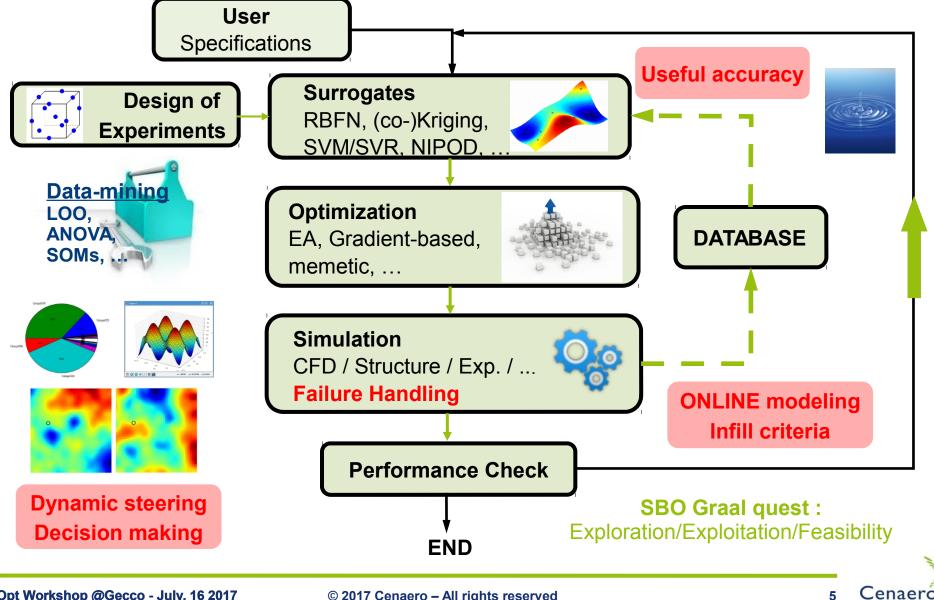
Design Competencies



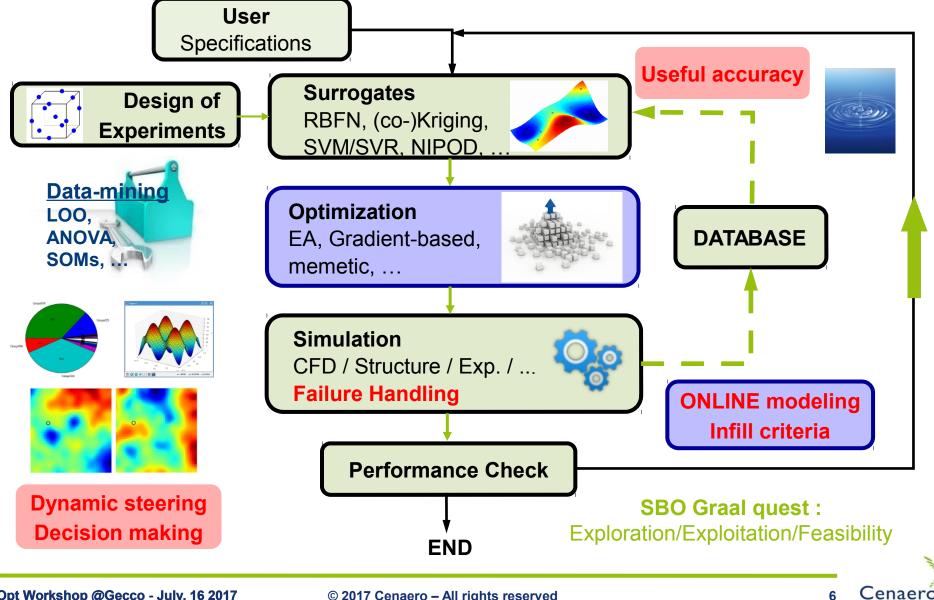
SAEOpt Workshop @Gecco - July, 16 2017

© 2017 Cenaero – All rights reserved

- Minamo is the multi-disciplinary design optimization tool of Cenaero, strongly based on « fast » surrogate models, for
 - Design space exploration
 - Optimization
 - Sensitivity analysis and Parametric studies
 - Data analysis and Visualization
 - Robust design and Reliability
- Minamo is a generic and transverse tool.



PROD-F-015-02

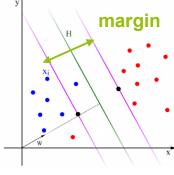

Surrogate-Assisted Approach

SAEOpt Workshop @Gecco - July, 16 2017

© 2017 Cenaero – All rights reserved

Surrogate-Assisted Approach

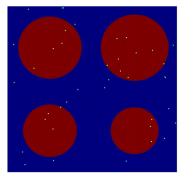
SAEOpt Workshop @Gecco - July, 16 2017

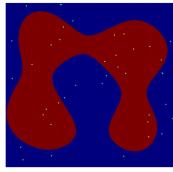

- A feasibility criterion imposes a classification process
- Classification of <u>binary</u> data : Support Vector Machines
 - Supervised learning models
 - Non-probabilistic linear classifier
 - Separating hyperplane with margin maximization
 - Classification/Regression in a high-dimensional space
- Classification of <u>continuous</u> data:
 - Define the probability of classification (pf) based on the SVM model
 - Sigmoid model proposed by Platt

$$pf = Prob(+1|x) = \frac{1}{1 + e^{\left(As(x) + B\left(\frac{d_0}{d_1} - \frac{d_1}{d_0}\right)\right)}}$$

J. Platt. *Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods*, Advances in large margin classifiers, 10(3): 61-74, 1999.

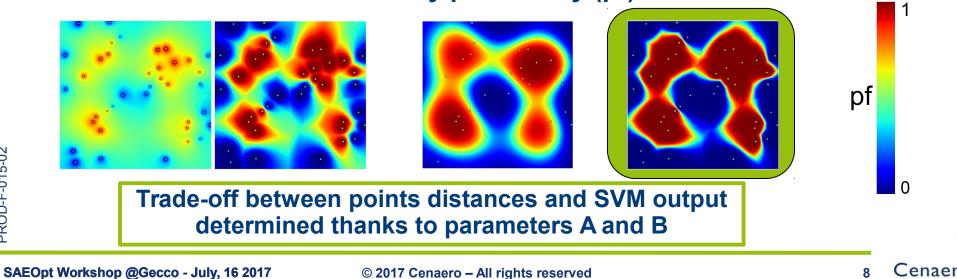
Probabilistic Support Vector Machines (PSVM)


© 2017 Cenaero – All rights reserved


PROD-F-015-02

Probabilistic Support Vector Machines (PSVM)

Feasible zones in red


Original zones

SVM model

 $\operatorname{Prob}(+1|x) = \frac{\mathbf{L}}{1+e^{\left(As(x)+B\left(\frac{d_n}{d_p}-\frac{d_p}{d_n}\right)\right)}}$

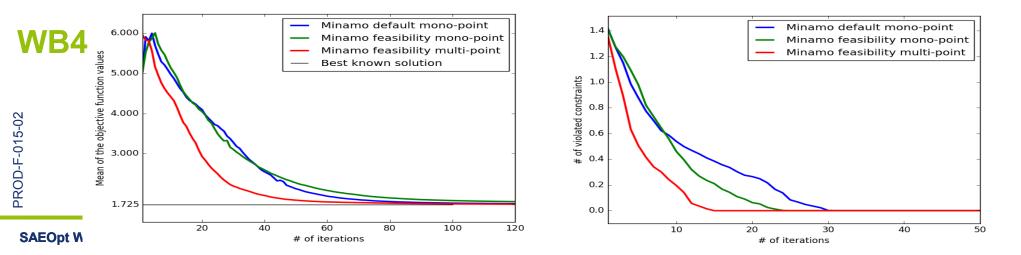
PSVM feasibility probability (pf)

- Enhanced capturing of the feasible zones in Minamo:
 - Auto-adaptive surrogate models in an online framework
 - <u>Constraint handling</u> : blend of interpolation/regression and classification :
 - Combining constraint tournament selection methods with PSVM-enabled feasibility probability to improve its ability to quickly reach feasible zones
- Mono-point : Complexity of combining exploitation, exploration and feasibility in one single additional point.
- ⇒ A multi-point strategy
 - (can be parallelized) First point : default ISC based on Deb constrained tournament selection
 - Second point : criterion exploiting the PSVM-enabled feasibility \rightarrow Determination of feasible boundary probability

Innovative mono and multi-point infill sampling criteria

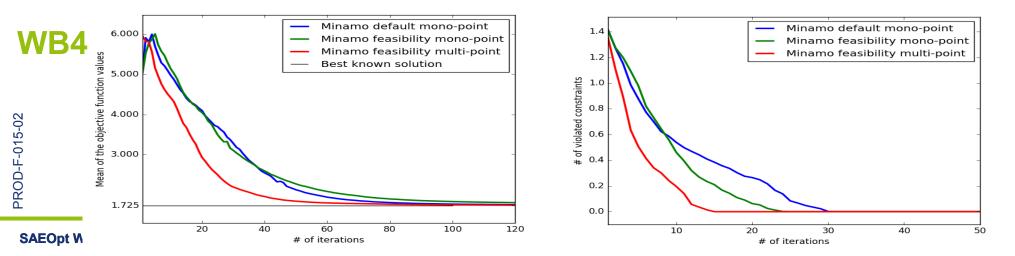
- Results on analytical constrained optimization problems (see e.g. [1] and [2])
- Objective function and constraint violation evolutions (mean of 500 independent runs, started from an initial database without any feasible point)
 - Minamo default mono-point : based on RBFN interpolation surrogates
 - Minamo feasibility mono-point : based on PSVM feasibility probability
 - Minamo feasibility multi-point : based on RBFN and PSVM
 - Compared to the best known solution

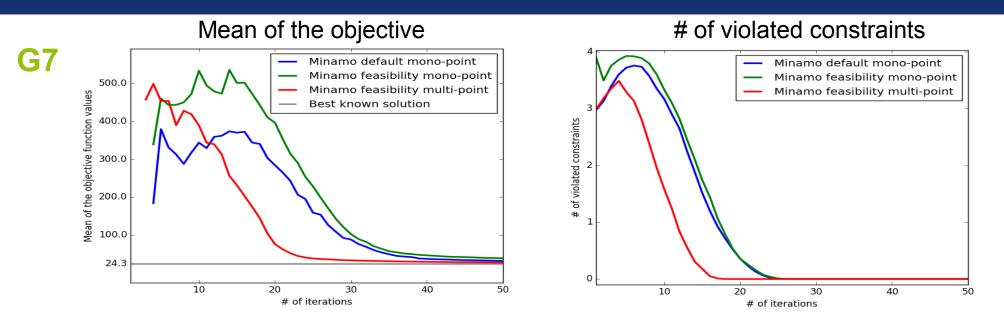
[1] Michalewicz, Z. and Schoenauer, M. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation 4(1), 1–32 (1996)


[2] Regis, R. G. Evolutionnary programming for high-dimensional constrained expensive black-box optimization using radial basis functions. IEEE Transactions on Evolutionary Computation 18(3),326–347 (2014).

Results on constrained optimization problems

Mean of the objective # of violated constraints **G10** Minamo default mono-point Minamo default mono-point Minamo feasibility mono-point Minamo feasibility mono-point Mean of the objective function values 00001 00000 2.0 Minamo feasibility multi-point Minamo feasibility multi-point Best known solution # of violated constraints 1.5 1.0 0.5 7049 0.0 10 30 20 40 10 20 30 40 50 60 70 80 90 50 # of iterations # of iterations


PSVM-based strategies reach faster feasible zones (but to the detriment of the objective convergence (for mono-point))

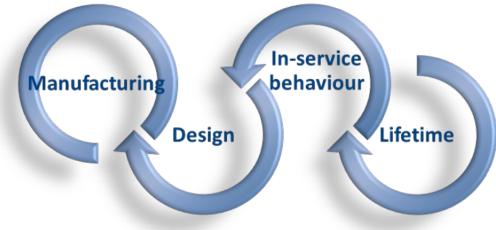

Results on constrained optimization problems

Mean of the objective # of violated constraints **G10** Minamo default mono-point Minamo default mono-point Minamo feasibility mono-point Minamo feasibility mono-point Mean of the objective function values 00001 00000 2.0 Minamo feasibility multi-point Minamo feasibility multi-point Best known solution # of violated constraints 1.5 1.0 0.5 7049 0.0 10 30 40 20 10 20 30 40 50 60 70 80 90 50 # of iterations # of iterations

The multi-point strategy allows to quickly identify the feasible zone with a good convergence

Results on constrained optimization problems

- The multi-point strategy :
 - Allows to quickly identify the feasible zone with a good convergence
 - Is more powerful (# of iterations, CPU time)


13

- Innovative SBO framework, combining interpolation/regression and classification surrogates
- Perspectives for further improvement of the SBO methodology to tackle high-dimensional highly constrained multi-disciplinary optimization problems :
 - Multi-point strategies with multiple zones of research
 - Surrogate-models : dimensionality reduction / multi-fidelity / multi-level
 - Cooperative Co-evolutionary algorithm (see Julien Blanchard's talk, ENUM2 session on Tuesday "A Cooperative Co-evolutionary Algorithm for solving Large-Scale Constrained Problems with Interaction Detection")

Conclusion

Towards multi-disciplinary, techno-economical, integrated process / product conception

Thank you for your attention !

SAEOpt Workshop @Gecco - July, 16 2017

© 2017 Cenaero – All rights reserved

15 Cenaero