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Cenaero : Mission & Competencies

Private research center (Gosselies, Belgium)

Multi-scale and multi-physics modeling and
niche capabilities
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Design Competencies

Context : Optimization based on computationally 5 Boimimion sl
intensive analysis

Surrogate-assisted space exploration and —— .
data-mining . 3 :

: ’
/ The optimization specification lies at the heart of\b
the success of the design methodology ‘
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What is Minamo ?

Minamo is the
of Cenaero, strongly based on « fast » surrogate
models, for

Design space exploration

Optimization

Sensitivity analysis and Parametric studies
Data analysis and Visualization

Robust design and Reliability

Minamo is a generic and transverse tool.
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Surrogate-Assisted Approach
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Efficient SBO — dealing with feasibility

A feasibility criterion imposes a classification process
Classification of binary data :

Supervised learning models
Non-probabilistic linear classifier

Separating hyperplane with margin maximization :.- AN .
Classification/Regression in a high-dimensional space | . . :
Classification of continuous data: “‘

Define the probability of classification (pf) based on the SVM
model

Sigmoid model proposed by Platt

1 J. Platt. Probabilistic outputs for support vector
pf = Prob ( +1 |X) — machines and comparisons to regularized
As(x)+B do_ ﬂ)) likelihood methods, Advances in large margin
d, d, classifiers, 10(3): 61-74, 1999.

1+e
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Probabilistic Support Vector Machines (PSVM)

Feasible zones in red

. . o

Original zones SVM model

PSVM feasibility probability (pf)

1

:. v‘ow 'r’-; ¢ . ' 7 ‘\
&;: .f"‘h‘ ." ‘ - N )

Trade-off between points distances and SVM output
determined thanks to parameters A and B
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Efficient SBO — dealing with feasibility

Enhanced capturing of the feasible zones in
Minamo :
Auto-adaptive surrogate models in an online framework

Constraint handling : blend of interpolation/regression

and classification :

Combining constraint tournament selection methods with PSVM-enabled
feasibility probability to improve its ability to quickly reach feasible zones

Mono-point : Complexity of combining exploitation,
exploration and feasibility in one single additional point.

A strategy (can be parallelized)
First point : default ISC based on Deb constrained tournament
selection

Second point : criterion exploiting the PSVM-enabled feasibility
probability — Determination of feasible boundary

= Innovative mono and multi-point infill sampling criteria

PROD-F-015-02
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Numerical results

Results on analytical constrained optimization
problems (see e.g. [1] and [2])

Objective function and constraint violation evolutions
(mean of 500 independent runs, started from an initial database
without any feasible point)

Minamo default mono-point : based on RBFN interpolation
surrogates

Minamo feasibility mono-point : based on PSVM feasibility
probability

Minamo feasibility multi-point : based on RBFN and PSVM
Compared to the best known solution

[1] Michalewicz, Z. and Schoenauer, M. Evolutionary algorithms for constrained parameter optimization problems.
Evolutionary Computation 4(1), 1-32 (1996)
[2] Regis, R. G. Evolutionnary programming for high-dimensional constrained expensive black-box optimization

using radial basis functions. IEEE Transactions on Evolutionary Computation 18(3),326-347 (2014).
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Results on constrained optimization problems

Mean of the objective # of violated constraints
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PSVM-based strategies reach faster feasible zones
(but to the detriment of the objective convergence (for mono-point))
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Results on constrained optimization problems

Mean of the objective # of violated constraints
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The multi-point strategy allows to quickly identify the feasible zone
with a good convergence
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Results on constrained optimization problems

Mean of the objectlve # of V|olated constralnts
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The multi-point strategy :

Allows to quickly identify the feasible zone with a
good convergence

Is more powerful (# of iterations, CPU time)
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Conclusions and perspectives

Innovative SBO framework, combining
interpolation/regression and classification surrogates

Perspectives for further improvement of the SBO
methodology to tackle high-dimensional highly
constrained multi-disciplinary optimization
problems :

Multi-point strategies with multiple zones of research

Surrogate-models : dimensionality reduction / multi-fidelity /
multi-level

Cooperative Co-evolutionary algorithm
(see Julien Blanchard's talk, ENUM2 session on Tuesday

“A Cooperative Co-evolutionary Algorithm for solving Large-Scale
Constrained Problems with Interaction Detection”)

UNIVERSITE
DE NAMUR
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Conclusion

' In-service\}
behaviour

anufacturing

Lifetime

Thank you for your attention !

\L{:\
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